Classification of sonar data for a mobile robot using neural networks

D. Diep, A. Johannet, P. Bonnefoy, F. Harroy, P. Loiseau
{"title":"Classification of sonar data for a mobile robot using neural networks","authors":"D. Diep, A. Johannet, P. Bonnefoy, F. Harroy, P. Loiseau","doi":"10.1109/IJSIS.1998.685456","DOIUrl":null,"url":null,"abstract":"We study an innovative architecture of an ultrasonic sensor, in conjunction with a neural network-based classification algorithm, in order to recognize some geometric obstacles encountered by a mobile robot. The ultrasonic sensor is made of the association of an array of ultrasonic transducers, building an acoustic antenna, and providing acoustic scans with a fine resolution. The neural network is a multilayer perceptron which was trained with a set of features extracted from the sonar data. Results show that, by selecting appropriate features, the network can be trained to classify some geometric shapes, like wall corners and edges.","PeriodicalId":289764,"journal":{"name":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1998.685456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We study an innovative architecture of an ultrasonic sensor, in conjunction with a neural network-based classification algorithm, in order to recognize some geometric obstacles encountered by a mobile robot. The ultrasonic sensor is made of the association of an array of ultrasonic transducers, building an acoustic antenna, and providing acoustic scans with a fine resolution. The neural network is a multilayer perceptron which was trained with a set of features extracted from the sonar data. Results show that, by selecting appropriate features, the network can be trained to classify some geometric shapes, like wall corners and edges.
基于神经网络的移动机器人声纳数据分类
我们研究了一种创新的超声波传感器结构,结合基于神经网络的分类算法,以识别移动机器人遇到的一些几何障碍物。超声波传感器由一组超声波换能器组合而成,构建声学天线,并提供高精度的声学扫描。该神经网络是一个多层感知器,使用从声纳数据中提取的一组特征进行训练。结果表明,通过选择合适的特征,该网络可以对一些几何形状进行分类,如墙角和边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信