Unsupervised Decomposition of Mixed Pixels Using the Maximum Entropy Principle

Lidan Miao, H. Qi, H. Szu
{"title":"Unsupervised Decomposition of Mixed Pixels Using the Maximum Entropy Principle","authors":"Lidan Miao, H. Qi, H. Szu","doi":"10.1109/ICPR.2006.1142","DOIUrl":null,"url":null,"abstract":"Due to the wide existence of mixed pixels, the derivation of constituent components (endmembers) and their proportions (abundances) at subpixel scales has become an important research topic. In this paper, we propose a novel unsupervised decomposition method based on the classical maximum entropy principle, termed uMaxEnt. The algorithm integrates a global least square error-based endmember detection and a per-pixel maximum entropy learning to find the most possible proportions. We apply the proposed method to the subject of spectral unmixing. The experimental results obtained from both simulated and real hyper-spectral data demonstrate the effectiveness of the uMaxEnt method","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.1142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Due to the wide existence of mixed pixels, the derivation of constituent components (endmembers) and their proportions (abundances) at subpixel scales has become an important research topic. In this paper, we propose a novel unsupervised decomposition method based on the classical maximum entropy principle, termed uMaxEnt. The algorithm integrates a global least square error-based endmember detection and a per-pixel maximum entropy learning to find the most possible proportions. We apply the proposed method to the subject of spectral unmixing. The experimental results obtained from both simulated and real hyper-spectral data demonstrate the effectiveness of the uMaxEnt method
基于最大熵原理的混合像素的无监督分解
由于混合像元的广泛存在,在亚像元尺度上的组成成分(端元)及其比例(丰度)的推导成为一个重要的研究课题。本文提出了一种基于经典最大熵原理的无监督分解方法uMaxEnt。该算法结合了基于全局最小二乘误差的端元检测和逐像素最大熵学习来找到最可能的比例。我们将所提出的方法应用于光谱分解的课题。模拟和真实高光谱数据的实验结果表明了uMaxEnt方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信