Finite Element Model Updating Using Fish School Search Optimization Method

I. Boulkabeit, Linda Mthembu, T. Marwala, Fernando Buarque de Lima-Neto
{"title":"Finite Element Model Updating Using Fish School Search Optimization Method","authors":"I. Boulkabeit, Linda Mthembu, T. Marwala, Fernando Buarque de Lima-Neto","doi":"10.1109/BRICS-CCI-CBIC.2013.80","DOIUrl":null,"url":null,"abstract":"A recent nature inspired optimization algorithm, Fish School Search (FSS) is applied to the finite element model (FEM) updating problem. This method is tested on a GARTEUR SM-AG19 aeroplane structure. The results of this algorithm are compared with two other metaheuristic algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). It is observed that on average, the FSS and PSO algorithms give more accurate results than the GA. A minor modification to the FSS is proposed. This modification improves the performance of FSS on the FEM updating problem which has a constrained search space.","PeriodicalId":306195,"journal":{"name":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A recent nature inspired optimization algorithm, Fish School Search (FSS) is applied to the finite element model (FEM) updating problem. This method is tested on a GARTEUR SM-AG19 aeroplane structure. The results of this algorithm are compared with two other metaheuristic algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). It is observed that on average, the FSS and PSO algorithms give more accurate results than the GA. A minor modification to the FSS is proposed. This modification improves the performance of FSS on the FEM updating problem which has a constrained search space.
基于鱼群搜索优化方法的有限元模型更新
将一种受自然启发的优化算法鱼群搜索(Fish School Search, FSS)应用于有限元模型更新问题。该方法在GARTEUR SM-AG19飞机结构上进行了试验。将该算法与遗传算法(GA)和粒子群算法(PSO)进行了比较。观察到,平均而言,FSS和PSO算法比遗传算法给出更准确的结果。提出了对金融监督制度的一个小修改。这种改进提高了FSS在有约束搜索空间的有限元更新问题上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信