A Domain Specific Parallel Corpus and Enhanced English-Assamese Neural Machine Translation

Sahinur Rahman Laskar, Riyanka Manna, Partha Pakray, Sivaji Bandyopadhyay
{"title":"A Domain Specific Parallel Corpus and Enhanced English-Assamese Neural Machine Translation","authors":"Sahinur Rahman Laskar, Riyanka Manna, Partha Pakray, Sivaji Bandyopadhyay","doi":"10.13053/cys-26-4-4423","DOIUrl":null,"url":null,"abstract":"Machine translation deals with automatic translation from one natural language to another. Neural machine translation is a widely accepted technique of the corpus-based machine translation approach. However, an adequate amount of training data is required, and there is a need for the domain-wise parallel corpus to improve translational performance that shows translational coverages in various domains. In this work, a domain-specific parallel corpus is prepared that includes different domain coverages, namely, Agriculture, Government Office, Judiciary, Social Media, Tourism, COVID-19, Sports, and Literature domains for low-resource English-Assamese pair translation. Moreover, we have tackled data scarcity and word-order divergence problems via data augmentation and prior alignment concept. Also, we have contributed Assamese pretrained LM, Assamese word-embeddings by utilizing Assamese monolingual data, and a bilingual dictionary-based post-processing step to enhance transformer-based neural machine translation. We have achieved state-of-the-art results for both forward (English-to-Assamese) and backward (Assamese-to-English) directions of translation.","PeriodicalId":333706,"journal":{"name":"Computación Y Sistemas","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computación Y Sistemas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/cys-26-4-4423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Machine translation deals with automatic translation from one natural language to another. Neural machine translation is a widely accepted technique of the corpus-based machine translation approach. However, an adequate amount of training data is required, and there is a need for the domain-wise parallel corpus to improve translational performance that shows translational coverages in various domains. In this work, a domain-specific parallel corpus is prepared that includes different domain coverages, namely, Agriculture, Government Office, Judiciary, Social Media, Tourism, COVID-19, Sports, and Literature domains for low-resource English-Assamese pair translation. Moreover, we have tackled data scarcity and word-order divergence problems via data augmentation and prior alignment concept. Also, we have contributed Assamese pretrained LM, Assamese word-embeddings by utilizing Assamese monolingual data, and a bilingual dictionary-based post-processing step to enhance transformer-based neural machine translation. We have achieved state-of-the-art results for both forward (English-to-Assamese) and backward (Assamese-to-English) directions of translation.
一个特定领域的平行语料库和增强的英语-阿萨姆语神经机器翻译
机器翻译处理从一种自然语言到另一种自然语言的自动翻译。神经网络机器翻译是一种被广泛接受的基于语料库的机器翻译方法。然而,需要足够数量的训练数据,并且需要领域智能并行语料库来提高翻译性能,以显示不同领域的翻译覆盖率。在这项工作中,准备了一个特定领域的平行语料库,其中包括不同的领域覆盖范围,即农业、政府办公室、司法、社交媒体、旅游、COVID-19、体育和文学领域,用于低资源英语-阿萨姆语对翻译。此外,我们还通过数据增强和优先对齐概念解决了数据稀缺和词序偏离问题。此外,我们还贡献了阿萨姆语预训练LM,利用阿萨姆语单语数据的阿萨姆语词嵌入,以及基于双语词典的后处理步骤,以增强基于变压器的神经机器翻译。我们在正向(英语到阿萨姆语)和反向(阿萨姆语到英语)方向的翻译方面都取得了最先进的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信