Genomic Data Sharing under Dependent Local Differential Privacy

Emre Yilmaz, Tianxi Ji, Erman Ayday, Pan Li
{"title":"Genomic Data Sharing under Dependent Local Differential Privacy","authors":"Emre Yilmaz, Tianxi Ji, Erman Ayday, Pan Li","doi":"10.1145/3508398.3511519","DOIUrl":null,"url":null,"abstract":"Privacy-preserving genomic data sharing is prominent to increase the pace of genomic research, and hence to pave the way towards personalized genomic medicine. In this paper, we introduce (ε , T$)-dependent local differential privacy (LDP) for privacy-preserving sharing of correlated data and propose a genomic data sharing mechanism under this privacy definition. We first show that the original definition of LDP is not suitable for genomic data sharing, and then we propose a new mechanism to share genomic data. The proposed mechanism considers the correlations in data during data sharing, eliminates statistically unlikely data values beforehand, and adjusts the probability distributions for each shared data point accordingly. By doing so, we show that we can avoid an attacker from inferring the correct values of the shared data points by utilizing the correlations in the data. By adjusting the probability distributions of the shared states of each data point, we also improve the utility of shared data for the data collector. Furthermore, we develop a greedy algorithm that strategically identifies the processing order of the shared data points with the aim of maximizing the utility of the shared data. Our evaluation results on a real-life genomic dataset show the superiority of the proposed mechanism compared to the randomized response mechanism (a widely used technique to achieve LDP).","PeriodicalId":102306,"journal":{"name":"Proceedings of the Twelfth ACM Conference on Data and Application Security and Privacy","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508398.3511519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Privacy-preserving genomic data sharing is prominent to increase the pace of genomic research, and hence to pave the way towards personalized genomic medicine. In this paper, we introduce (ε , T$)-dependent local differential privacy (LDP) for privacy-preserving sharing of correlated data and propose a genomic data sharing mechanism under this privacy definition. We first show that the original definition of LDP is not suitable for genomic data sharing, and then we propose a new mechanism to share genomic data. The proposed mechanism considers the correlations in data during data sharing, eliminates statistically unlikely data values beforehand, and adjusts the probability distributions for each shared data point accordingly. By doing so, we show that we can avoid an attacker from inferring the correct values of the shared data points by utilizing the correlations in the data. By adjusting the probability distributions of the shared states of each data point, we also improve the utility of shared data for the data collector. Furthermore, we develop a greedy algorithm that strategically identifies the processing order of the shared data points with the aim of maximizing the utility of the shared data. Our evaluation results on a real-life genomic dataset show the superiority of the proposed mechanism compared to the randomized response mechanism (a widely used technique to achieve LDP).
依赖局部差分隐私下的基因组数据共享
保护隐私的基因组数据共享对于加快基因组研究的步伐,从而为个性化基因组医学铺平道路具有重要意义。本文引入(ε, T$)依赖的局部差分隐私(LDP)来实现相关数据的隐私保护共享,并在此隐私定义下提出了基因组数据共享机制。我们首先证明LDP的原始定义不适合基因组数据共享,然后我们提出了一种新的基因组数据共享机制。该机制在数据共享过程中考虑数据之间的相关性,预先消除统计上不太可能的数据值,并相应地调整每个共享数据点的概率分布。通过这样做,我们表明我们可以避免攻击者通过利用数据中的相关性来推断共享数据点的正确值。通过调整每个数据点共享状态的概率分布,我们还提高了数据收集器共享数据的效用。此外,我们开发了一种贪婪算法,该算法战略性地识别共享数据点的处理顺序,目的是最大化共享数据的效用。我们在真实基因组数据集上的评估结果表明,与随机响应机制(一种广泛用于实现LDP的技术)相比,所提出的机制具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信