{"title":"Food Recognition System: A New Approach Based on Wavelet-LSTM","authors":"Ghulam Hussain","doi":"10.30537/sjet.v6i1.1258","DOIUrl":null,"url":null,"abstract":"An automated system for analyzing daily dietary intake is essential for human well-being and healthcare. This work presents a novel wearable necklace embedded with a piezoelectric sensor and a microcontroller to monitor food ingestion of users. To effectively represent the food ingestion patterns, the sensor signal is dynamically segmented using a bidirectional search technique. Each segmented food intake pattern consists of a chewing sequence and a swallow peak. We exploit wavelet transform to decompose the complex food ingestion patterns, collected by the sensor, into frequency sub-bands at discrete scales. The frequency sub-bands are used as sequences to train long short-term memory (LSTM) for the recognition of 5 food categories. Our proposed recognition model based on wavelet-LSTM recognizes 5 food classes with an accuracy of 98.1% \n ","PeriodicalId":369308,"journal":{"name":"Sukkur IBA Journal of Emerging Technologies","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sukkur IBA Journal of Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30537/sjet.v6i1.1258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An automated system for analyzing daily dietary intake is essential for human well-being and healthcare. This work presents a novel wearable necklace embedded with a piezoelectric sensor and a microcontroller to monitor food ingestion of users. To effectively represent the food ingestion patterns, the sensor signal is dynamically segmented using a bidirectional search technique. Each segmented food intake pattern consists of a chewing sequence and a swallow peak. We exploit wavelet transform to decompose the complex food ingestion patterns, collected by the sensor, into frequency sub-bands at discrete scales. The frequency sub-bands are used as sequences to train long short-term memory (LSTM) for the recognition of 5 food categories. Our proposed recognition model based on wavelet-LSTM recognizes 5 food classes with an accuracy of 98.1%