{"title":"Data clustering using enhanced biogeography-based optimization","authors":"Raju Pal, M. Saraswat","doi":"10.1109/IC3.2017.8284305","DOIUrl":null,"url":null,"abstract":"Data clustering is one of the important tool in data analysis which partitions the dataset into different groups based on similarity and dissimilarity measures. Clustering is still a NP-hard problem for large dataset due to the presence of irrelevant, overlapping, missing and unknown features which leads to converge it into local optima. Therefore, this paper introduces a novel hybrid meta-heuristic data clustering approach which is based on K-means and biogeography-based optimization (BBO). The proposed method uses K-means to initialize the population of BBO. The simulation has been done on eleven dataset. Experimental and statistical results validate that proposed method outperforms the existing methods.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
Data clustering is one of the important tool in data analysis which partitions the dataset into different groups based on similarity and dissimilarity measures. Clustering is still a NP-hard problem for large dataset due to the presence of irrelevant, overlapping, missing and unknown features which leads to converge it into local optima. Therefore, this paper introduces a novel hybrid meta-heuristic data clustering approach which is based on K-means and biogeography-based optimization (BBO). The proposed method uses K-means to initialize the population of BBO. The simulation has been done on eleven dataset. Experimental and statistical results validate that proposed method outperforms the existing methods.