Waves on the Water Surface — Mathematical Models — Part 1

V. Shakhin, T. V. Shakhina
{"title":"Waves on the Water Surface — Mathematical Models — Part 1","authors":"V. Shakhin, T. V. Shakhina","doi":"10.1260/1759-3131.6.3.113","DOIUrl":null,"url":null,"abstract":"The work presents new expressions related to wave energy density and flux based on Stokes and cnoidal waves theories. It shows that as progressive waves of finite amplitude propagate a compensatory reverse flow is formed within the bottom fluid layers. The existence of such flow was experimentally confirmed. Modified mathematical models for surface waves over a non-uniform bottom and of a free plane configuration are suggested. A method of calculating the wave transformation and the currents in the surf zone is proposed. Computations made over a wide range of variations in wave parameters are presented.","PeriodicalId":105024,"journal":{"name":"The International Journal of Ocean and Climate Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Ocean and Climate Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1260/1759-3131.6.3.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The work presents new expressions related to wave energy density and flux based on Stokes and cnoidal waves theories. It shows that as progressive waves of finite amplitude propagate a compensatory reverse flow is formed within the bottom fluid layers. The existence of such flow was experimentally confirmed. Modified mathematical models for surface waves over a non-uniform bottom and of a free plane configuration are suggested. A method of calculating the wave transformation and the currents in the surf zone is proposed. Computations made over a wide range of variations in wave parameters are presented.
水面上的波浪-数学模型-第1部分
本文提出了基于斯托克斯和余弦波理论的波浪能量密度和通量的新表达式。结果表明,当有限振幅的渐进波传播时,在底层流体层内形成补偿逆流。实验证实了这种流动的存在。提出了非均匀底表面波和自由平面结构表面波的修正数学模型。提出了一种计算海浪变换和海浪区水流的方法。对波浪参数的大范围变化进行了计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信