Dynamic optimization of semantic annotation relevance

Dario Bonino, Fulvio Corno, Giovanni Squillero
{"title":"Dynamic optimization of semantic annotation relevance","authors":"Dario Bonino, Fulvio Corno, Giovanni Squillero","doi":"10.1109/CEC.2004.1331047","DOIUrl":null,"url":null,"abstract":"The introduction of semantics in the next generation of the Web, the semantic Web, is strongly based on conceptual description of resources by means of semantic annotations. Effective technologies are therefore required lo correctly map the available syntactic information onto a set of relevant conceptual entities able to model the knowledge domain to which a resource belongs. In attempting to address such issue, we propose an evolutionary optimization of semantic annotation relevance which can improve text-to-concept mapping using information from both the syntactic and the semantic domains. The proposed algorithm leverages relevance information on resource contents, with respect to a subset of a given ontology, and performs several ontology navigation steps for extracting the set of most relevant annotations, in terms of semantic expressiveness. The fitness function of the algorithm is strongly time dependent since the set of annotation to be refined may vary according to user requests, to changes in the domain ontology and is related to the granularity of the annotation set.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The introduction of semantics in the next generation of the Web, the semantic Web, is strongly based on conceptual description of resources by means of semantic annotations. Effective technologies are therefore required lo correctly map the available syntactic information onto a set of relevant conceptual entities able to model the knowledge domain to which a resource belongs. In attempting to address such issue, we propose an evolutionary optimization of semantic annotation relevance which can improve text-to-concept mapping using information from both the syntactic and the semantic domains. The proposed algorithm leverages relevance information on resource contents, with respect to a subset of a given ontology, and performs several ontology navigation steps for extracting the set of most relevant annotations, in terms of semantic expressiveness. The fitness function of the algorithm is strongly time dependent since the set of annotation to be refined may vary according to user requests, to changes in the domain ontology and is related to the granularity of the annotation set.
语义标注相关性的动态优化
下一代Web(语义Web)中引入的语义在很大程度上是基于通过语义注释对资源的概念性描述。因此,需要有效的技术来将可用的语法信息正确地映射到一组相关的概念实体上,这些概念实体能够对资源所属的知识领域进行建模。为了解决这一问题,我们提出了一种语义注释相关性的进化优化方法,该方法可以利用句法和语义领域的信息改进文本到概念的映射。提出的算法利用资源内容的相关信息,相对于给定本体的一个子集,并执行几个本体导航步骤,以提取语义表达性方面最相关的注释集。该算法的适应度函数具有很强的时间依赖性,因为待细化的注释集可能会根据用户请求、领域本体的变化而变化,并且与注释集的粒度有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信