An LSTM-CRF Based Approach to Token-Level Metaphor Detection

Malay Pramanick, Ashim Gupta, Pabitra Mitra
{"title":"An LSTM-CRF Based Approach to Token-Level Metaphor Detection","authors":"Malay Pramanick, Ashim Gupta, Pabitra Mitra","doi":"10.18653/v1/W18-0908","DOIUrl":null,"url":null,"abstract":"Automatic processing of figurative languages is gaining popularity in NLP community for their ubiquitous nature and increasing volume. In this era of web 2.0, automatic analysis of sarcasm and metaphors is important for their extensive usage. Metaphors are a part of figurative language that compares different concepts, often on a cognitive level. Many approaches have been proposed for automatic detection of metaphors, even using sequential models or neural networks. In this paper, we propose a method for detection of metaphors at the token level using a hybrid model of Bidirectional-LSTM and CRF. We used fewer features, as compared to the previous state-of-the-art sequential model. On experimentation with VUAMC, our method obtained an F-score of 0.674.","PeriodicalId":190853,"journal":{"name":"Fig-Lang@NAACL-HLT","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fig-Lang@NAACL-HLT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-0908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Automatic processing of figurative languages is gaining popularity in NLP community for their ubiquitous nature and increasing volume. In this era of web 2.0, automatic analysis of sarcasm and metaphors is important for their extensive usage. Metaphors are a part of figurative language that compares different concepts, often on a cognitive level. Many approaches have been proposed for automatic detection of metaphors, even using sequential models or neural networks. In this paper, we propose a method for detection of metaphors at the token level using a hybrid model of Bidirectional-LSTM and CRF. We used fewer features, as compared to the previous state-of-the-art sequential model. On experimentation with VUAMC, our method obtained an F-score of 0.674.
基于LSTM-CRF的符号级隐喻检测方法
由于图形语言的普遍性和数量的不断增加,图形语言的自动处理在自然语言处理领域越来越受欢迎。在这个web 2.0的时代,自动分析讽刺和隐喻对于它们的广泛使用是很重要的。隐喻是比喻性语言的一部分,通常在认知层面上比较不同的概念。已经提出了许多方法来自动检测隐喻,甚至使用顺序模型或神经网络。在本文中,我们提出了一种使用双向lstm和CRF的混合模型在标记层检测隐喻的方法。与之前最先进的序列模型相比,我们使用了更少的特征。在VUAMC的实验中,我们的方法获得了0.674的f分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信