Introductory PZT Actuators Optimal Working Configuration Experimental Study in a Turbofan Engine Fan Rotor Blade

F. Botta, A. Rossi
{"title":"Introductory PZT Actuators Optimal Working Configuration Experimental Study in a Turbofan Engine Fan Rotor Blade","authors":"F. Botta, A. Rossi","doi":"10.1115/GT2020-15547","DOIUrl":null,"url":null,"abstract":"\n Vibration suppression systems are often crucial to extend the life cycle of the structures in several engineering fields. The passive systems are the most commonly used but, in case of dynamic loads, the active systems show a greater efficiency. Since the external forces acting on a rotating blade may excite several vibrational modes simultaneously, an active multi-modal damping device could enhance the damping action. The piezoelectric (PZT) actuators seem to be the most promising but their placing on the structure plays a crucial role. In this paper, some PZT actuators have been mounted on the surface of an actual rotor blade from the second fan stage of a turbofan engine and their working configuration has been optimized on the basis of a previously developed model. Thereby, the actuators are able to efficiently damp the most detrimental resonant mode or a resonant modes coupling. The experimental results show that the proposed system well suits the application and may be considered as an alternative method to deal with vibration issues in turbomachinery blades.","PeriodicalId":186943,"journal":{"name":"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2020-15547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Vibration suppression systems are often crucial to extend the life cycle of the structures in several engineering fields. The passive systems are the most commonly used but, in case of dynamic loads, the active systems show a greater efficiency. Since the external forces acting on a rotating blade may excite several vibrational modes simultaneously, an active multi-modal damping device could enhance the damping action. The piezoelectric (PZT) actuators seem to be the most promising but their placing on the structure plays a crucial role. In this paper, some PZT actuators have been mounted on the surface of an actual rotor blade from the second fan stage of a turbofan engine and their working configuration has been optimized on the basis of a previously developed model. Thereby, the actuators are able to efficiently damp the most detrimental resonant mode or a resonant modes coupling. The experimental results show that the proposed system well suits the application and may be considered as an alternative method to deal with vibration issues in turbomachinery blades.
涡扇发动机风扇转子叶片PZT作动器优化工作结构试验研究
在许多工程领域中,减振系统对于延长结构的生命周期至关重要。无源系统是最常用的,但在动态负载的情况下,主动系统显示出更高的效率。由于作用在旋转叶片上的外力可能同时激发多个振动模态,主动多模态阻尼装置可以增强叶片的阻尼作用。压电(PZT)驱动器似乎是最有前途的,但它们在结构上的位置起着至关重要的作用。本文将一些压电陶瓷作动器安装在涡扇发动机二级实际转子叶片表面,并在已有模型的基础上对其工作结构进行了优化。因此,执行器能够有效地阻尼最有害的谐振模式或谐振模式耦合。实验结果表明,该系统能很好地满足实际应用,可作为解决涡轮机械叶片振动问题的一种替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信