RRT* Trajectory Scheduling Using Angles-Only Measurements for AUV Recovery

Xuezhi Wang, Simon Williams, D. Angley, C. Gilliam, T. Jackson, Richard Ellem, A. Bessell, B. Moran
{"title":"RRT* Trajectory Scheduling Using Angles-Only Measurements for AUV Recovery","authors":"Xuezhi Wang, Simon Williams, D. Angley, C. Gilliam, T. Jackson, Richard Ellem, A. Bessell, B. Moran","doi":"10.23919/fusion43075.2019.9011175","DOIUrl":null,"url":null,"abstract":"Sensor trajectory optimisation involves extensive search over the sensor motion space against an optimisation criterion. The search under dynamic programming or fixed grid is often computationally nontrivial even for a myopic search scenario. In this paper, we study the problem of an autonomous underwater vehicle planning its return route to a moving recovery vessel. To complicate the issue, the AUV needs to localize the vessel using angle-only measurements. Accordingly, we propose a random sampling based trajectory planning algorithm that incorporates both a dynamic goal and the need to localize that goal. More precisely, we incorporate an information theoretic cost into a rapid-exploring random tree trajectory planning framework thus allowing the AUV to both localize and reach the recovery vessel. Our experimental results show that the proposed method may achieve the same trajectory optimisation performance as that under dynamic programming method but with greater computational efficiency.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sensor trajectory optimisation involves extensive search over the sensor motion space against an optimisation criterion. The search under dynamic programming or fixed grid is often computationally nontrivial even for a myopic search scenario. In this paper, we study the problem of an autonomous underwater vehicle planning its return route to a moving recovery vessel. To complicate the issue, the AUV needs to localize the vessel using angle-only measurements. Accordingly, we propose a random sampling based trajectory planning algorithm that incorporates both a dynamic goal and the need to localize that goal. More precisely, we incorporate an information theoretic cost into a rapid-exploring random tree trajectory planning framework thus allowing the AUV to both localize and reach the recovery vessel. Our experimental results show that the proposed method may achieve the same trajectory optimisation performance as that under dynamic programming method but with greater computational efficiency.
RRT*轨迹调度使用角度仅测量AUV恢复
传感器轨迹优化涉及针对优化准则对传感器运动空间的广泛搜索。动态规划或固定网格下的搜索在计算上往往是不平凡的,即使对于近视眼搜索场景也是如此。本文研究了自主水下航行器返回移动回收船的路径规划问题。使问题复杂化的是,AUV需要仅使用角度测量来定位船只。因此,我们提出了一种基于随机抽样的轨迹规划算法,该算法结合了动态目标和目标定位的需要。更准确地说,我们将信息理论成本纳入快速探索随机树轨迹规划框架,从而允许AUV定位并到达回收船。实验结果表明,该方法可以达到与动态规划方法相同的轨迹优化性能,但具有更高的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信