Vinaychandran Pondenkandath, Mathias Seuret, R. Ingold, Muhammad Zeshan Afzal, M. Liwicki
{"title":"Exploiting State-of-the-Art Deep Learning Methods for Document Image Analysis","authors":"Vinaychandran Pondenkandath, Mathias Seuret, R. Ingold, Muhammad Zeshan Afzal, M. Liwicki","doi":"10.1109/ICDAR.2017.325","DOIUrl":null,"url":null,"abstract":"This paper provides details of our (partially award-winning) methods submitted to four competitions of ICDAR 2017. In particular, they are designed to (i) classify scripts, (ii) perform pixel-based labeling for layout analysis, (iii) identify writers, and (iv) recognize font size and types. The methods build on the current state-of-the-art in Deep Learning and have been adapted to the specific needs of the individual tasks. All methods are variants of Convolutional Neural Network (CNN) with specialized architectures, initialization, and other tricks which have been introduced in the field of deep learning within the last few years.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper provides details of our (partially award-winning) methods submitted to four competitions of ICDAR 2017. In particular, they are designed to (i) classify scripts, (ii) perform pixel-based labeling for layout analysis, (iii) identify writers, and (iv) recognize font size and types. The methods build on the current state-of-the-art in Deep Learning and have been adapted to the specific needs of the individual tasks. All methods are variants of Convolutional Neural Network (CNN) with specialized architectures, initialization, and other tricks which have been introduced in the field of deep learning within the last few years.