Holomorphically planar conformal vector fields on almost alpha-cosymplectic (k,m)-spaces

M. Yıldırım, N. Aktan
{"title":"Holomorphically planar conformal vector fields on almost alpha-cosymplectic (k,m)-spaces","authors":"M. Yıldırım, N. Aktan","doi":"10.33401/fujma.1153224","DOIUrl":null,"url":null,"abstract":"The aim of the present paper is to study holomorphically planar conformal vector fields(HPCV) on almost alpha-cosymplectic (k,m)-spaces. This is done assuming various conditions such as i) U is pointwise collinear with xi ( in this case the integral manifold of the distribution D is totally geodesic or totally umbilic), ii) M has a constant xi-sectional curvature (under this condition the integral manifold of the distribution D is totally geodesic (or totally umbilic) or the manifold is isometric to sphere S2n+1(pc) of radius 1 pc ), iii) M an almost alpha-cosymplectic (k,m)-spaces ( in this case the manifold is constant negative curvature or the integral manifold of the distribution D is totally geodesic(or totally umbilic) or U is an eigenvector of h).","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.1153224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the present paper is to study holomorphically planar conformal vector fields(HPCV) on almost alpha-cosymplectic (k,m)-spaces. This is done assuming various conditions such as i) U is pointwise collinear with xi ( in this case the integral manifold of the distribution D is totally geodesic or totally umbilic), ii) M has a constant xi-sectional curvature (under this condition the integral manifold of the distribution D is totally geodesic (or totally umbilic) or the manifold is isometric to sphere S2n+1(pc) of radius 1 pc ), iii) M an almost alpha-cosymplectic (k,m)-spaces ( in this case the manifold is constant negative curvature or the integral manifold of the distribution D is totally geodesic(or totally umbilic) or U is an eigenvector of h).
几乎-余辛(k,m)-空间上的全纯平面共形向量场
本文的目的是研究几乎-余辛(k,m)-空间上的全纯平面共形向量场。这是在假设各种条件下完成的,例如i) U与xi点共线(在这种情况下,分布D的积分流形是完全测地线或完全脐带),ii) M具有恒定的xi截面曲率(在这种情况下,分布D的积分流形是完全测地线(或完全脐带)或流形与半径为1pc的球体S2n+1(pc)等距),iii) M和几乎-余辛(k, M)-空间(在这种情况下流形是常数负曲率或分布D的积分流形是完全测地线(或完全脐)或U是h的特征向量)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信