Vessel Trajectory Prediction Using Radial Basis Function Neural Networks

M. Stogiannos, Myron Papadimitrakis, H. Sarimveis, A. Alexandridis
{"title":"Vessel Trajectory Prediction Using Radial Basis Function Neural Networks","authors":"M. Stogiannos, Myron Papadimitrakis, H. Sarimveis, A. Alexandridis","doi":"10.1109/EUROCON52738.2021.9535562","DOIUrl":null,"url":null,"abstract":"This work presents a novel data-driven modeling approach for the direct prediction of a vessel’s trajectory through the use of AIS data. The proposed method is based on radial basis function neural networks trained with the fuzzy means algorithm, a combination which produces models of high accuracy and simple structures. The produced model is applied on real AIS data in order to approximate the behavioral patterns of cargo ships when moving in the vicinity of a busy port. Results show that the proposed method outperforms a well-established machine learning technique, namely multi-layer perceptrons, not only in terms of accuracy for one-step and multi-step-ahead prediction, but also by providing lower computational times; these facts make it suitable for use in receding horizon integrated control frameworks.","PeriodicalId":328338,"journal":{"name":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON52738.2021.9535562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work presents a novel data-driven modeling approach for the direct prediction of a vessel’s trajectory through the use of AIS data. The proposed method is based on radial basis function neural networks trained with the fuzzy means algorithm, a combination which produces models of high accuracy and simple structures. The produced model is applied on real AIS data in order to approximate the behavioral patterns of cargo ships when moving in the vicinity of a busy port. Results show that the proposed method outperforms a well-established machine learning technique, namely multi-layer perceptrons, not only in terms of accuracy for one-step and multi-step-ahead prediction, but also by providing lower computational times; these facts make it suitable for use in receding horizon integrated control frameworks.
基于径向基函数神经网络的船舶轨迹预测
这项工作提出了一种新的数据驱动建模方法,通过使用AIS数据直接预测船舶的轨迹。该方法基于模糊均值算法训练的径向基函数神经网络,这种结合产生的模型精度高,结构简单。将所建立的模型应用于实际AIS数据,以近似货船在繁忙港口附近移动时的行为模式。结果表明,该方法优于一种成熟的机器学习技术,即多层感知器,不仅在一步和多步预测的准确性方面,而且在提供更低的计算时间方面;这些事实使它适合用于后退水平综合控制框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信