Temporal Fusion Transformer for forecasting vital sign trajectories in intensive care patients

Ratchakit Phetrittikun, Kerdkiat Suvirat, Thanakron Na Pattalung, C. Kongkamol, T. Ingviya, Sitthichok Chaichulee
{"title":"Temporal Fusion Transformer for forecasting vital sign trajectories in intensive care patients","authors":"Ratchakit Phetrittikun, Kerdkiat Suvirat, Thanakron Na Pattalung, C. Kongkamol, T. Ingviya, Sitthichok Chaichulee","doi":"10.1109/BMEiCON53485.2021.9745215","DOIUrl":null,"url":null,"abstract":"The deterioration of a patient’s condition is usually preceded by several hours of abnormal physiology as indicated by the patient’s vital signs. Estimating the expected course of a patient’s future vital signs can allow clinicians to determine the risk of physiologic deterioration. Multi-horizon forecasting provides the ability to estimate the trajectory of vital signs at multiple time steps in advance, allowing clinicians to optimize an appropriate treatment plan for the patient. In this study, Temporal Fusion Transformer (TFT) was applied to forecast quantiles of future vital signs based on time-varying measurements of past vital signs. We developed our model using the Songklanagarind critical care dataset, which includes vital sign measurements from 140 patients. Results suggest that TFT can capture the temporal dynamics of vital signs and can potentially be used to detect irregular patterns in vital sign time series.","PeriodicalId":380002,"journal":{"name":"2021 13th Biomedical Engineering International Conference (BMEiCON)","volume":"2004 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON53485.2021.9745215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The deterioration of a patient’s condition is usually preceded by several hours of abnormal physiology as indicated by the patient’s vital signs. Estimating the expected course of a patient’s future vital signs can allow clinicians to determine the risk of physiologic deterioration. Multi-horizon forecasting provides the ability to estimate the trajectory of vital signs at multiple time steps in advance, allowing clinicians to optimize an appropriate treatment plan for the patient. In this study, Temporal Fusion Transformer (TFT) was applied to forecast quantiles of future vital signs based on time-varying measurements of past vital signs. We developed our model using the Songklanagarind critical care dataset, which includes vital sign measurements from 140 patients. Results suggest that TFT can capture the temporal dynamics of vital signs and can potentially be used to detect irregular patterns in vital sign time series.
用于预测重症监护患者生命体征轨迹的时间融合变压器
病人病情恶化之前,通常有几个小时的生理异常,这是由病人的生命体征所显示的。估计病人未来生命体征的预期病程可以使临床医生确定生理性恶化的风险。多视界预测提供了提前在多个时间步估计生命体征轨迹的能力,使临床医生能够为患者优化适当的治疗计划。在本研究中,基于对过去生命体征的时变测量,将时间融合变压器(TFT)应用于预测未来生命体征的分位数。我们使用Songklanagarind重症监护数据集开发了我们的模型,其中包括140名患者的生命体征测量数据。结果表明,TFT可以捕捉生命体征的时间动态,并有可能用于检测生命体征时间序列中的不规则模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信