Compression and predictive distributions for large alphabet i.i.d and Markov models

Xiao Yang, A. Barron
{"title":"Compression and predictive distributions for large alphabet i.i.d and Markov models","authors":"Xiao Yang, A. Barron","doi":"10.1109/ISIT.2014.6875285","DOIUrl":null,"url":null,"abstract":"This paper considers coding and predicting sequences of random variables generated from a large alphabet. We start from the i.i.d model and propose a simple coding distribution formulated by a product of tilted Poisson distributions which achieves close to optimal performance. Then we extend to Markov models, and in particular, tree sources. A context tree based algorithm is designed according to the frequency of various contexts in the data. It is a greedy algorithm which seeks for the greatest savings in codelength when constructing the tree. Compression and prediction of individual counts associated with the contexts again uses a product of tilted Poisson distributions. Implementing this method on a Chinese novel, about 20.56% savings in codelength is achieved compared to the i.i.d model.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper considers coding and predicting sequences of random variables generated from a large alphabet. We start from the i.i.d model and propose a simple coding distribution formulated by a product of tilted Poisson distributions which achieves close to optimal performance. Then we extend to Markov models, and in particular, tree sources. A context tree based algorithm is designed according to the frequency of various contexts in the data. It is a greedy algorithm which seeks for the greatest savings in codelength when constructing the tree. Compression and prediction of individual counts associated with the contexts again uses a product of tilted Poisson distributions. Implementing this method on a Chinese novel, about 20.56% savings in codelength is achieved compared to the i.i.d model.
大字母id和马尔可夫模型的压缩和预测分布
本文研究了由大字母表生成的随机变量序列的编码和预测问题。我们从i.i.d模型出发,提出了一种简单的编码分布,由倾斜泊松分布的乘积表示,达到了接近最优性能。然后我们扩展到马尔可夫模型,特别是树源模型。根据数据中各种上下文的出现频率,设计了一种基于上下文树的算法。它是一种贪心算法,在构造树时寻求最大的码长节省。与上下文相关的个体计数的压缩和预测再次使用倾斜泊松分布的乘积。在中文小说上实现该方法,与i.i.d模型相比,代码长度节省了约20.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信