M. Bellgardt, Sebastian Pape, David Gilbert, M. Prochnau, Georg König, T. Kuhlen
{"title":"Virtual Optical Bench: Teaching Spherical Lens Layout in VR with Real-Time Ray Tracing","authors":"M. Bellgardt, Sebastian Pape, David Gilbert, M. Prochnau, Georg König, T. Kuhlen","doi":"10.1109/VR55154.2023.00065","DOIUrl":null,"url":null,"abstract":"Teaching in optical systems design is usually performed on an optical bench. While experimentation plays an important role in education, experiments involving expensive or dangerous components are usually limited to short, heavily supervised sessions. Computer simulations, on the other hand, offer high accessibility, but suffer from reduced realism and tangibility when presented on a 2D screen. For this reason, we present the virtual optical bench, an application that lets users explore spherical lens layouts in virtual reality (VR). We implemented a numerically accurate simulation of optical systems using Nvidia OptiX, as well as a prototypical VR application, which we then evaluated in an expert review with 6 optics experts. Based on their feedback, we re-implemented our VR application in Unreal Engine 4. The re-implementation has since been actively used for teaching optical layouts, where we performed a qualitative evaluation with 18 students. We show that our virtual optical bench achieves good usability and is perceived to enhance the understanding of course contents.","PeriodicalId":346767,"journal":{"name":"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR55154.2023.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Teaching in optical systems design is usually performed on an optical bench. While experimentation plays an important role in education, experiments involving expensive or dangerous components are usually limited to short, heavily supervised sessions. Computer simulations, on the other hand, offer high accessibility, but suffer from reduced realism and tangibility when presented on a 2D screen. For this reason, we present the virtual optical bench, an application that lets users explore spherical lens layouts in virtual reality (VR). We implemented a numerically accurate simulation of optical systems using Nvidia OptiX, as well as a prototypical VR application, which we then evaluated in an expert review with 6 optics experts. Based on their feedback, we re-implemented our VR application in Unreal Engine 4. The re-implementation has since been actively used for teaching optical layouts, where we performed a qualitative evaluation with 18 students. We show that our virtual optical bench achieves good usability and is perceived to enhance the understanding of course contents.