P M Anderson, E Katsanis, S F Sencer, D Hasz, A C Ochoa, B Bostrom
{"title":"Depot characteristics and biodistribution of interleukin-2 liposomes: importance of route of administration.","authors":"P M Anderson, E Katsanis, S F Sencer, D Hasz, A C Ochoa, B Bostrom","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Due to rapid clearance of interleukin-2 (IL-2), it has had limited effective use as an in vivo immunostimulant. Current experimental and clinical protocols generally must utilize large doses, multiple injections, or continuous infusions of IL-2 in order to achieve significant immunostimulation, often at the expense of systemic toxicity. Therefore, the pharmacodynamics of IL-2 liposomes were investigated. IL-2 liposome incorporation efficiency was 80.4% (SD 5.5); vesicle diameter was 1.65 microns (SD 0.09) as determined by fluorescence-activated cell sorting (FACS). Both formulation (free cytokine vs. IL-2 liposomes) and route of administration were important variables in determination of the biodistribution and pharmacokinetic characteristics of IL-2. When free [125I]IL-2 was given i.v. to mice, only 6.5% was in the blood and 3% in liver and spleen 2 h after injection; on the other hand, at 2 h greater than 70% of i.v. [125I]IL-2 liposomes were detected in the blood, liver, spleen, and lungs. Mean i.v. elimination t1/2 from the blood of rats given 20 x 10(6) U/kg free cytokine or IL-2 liposomes was 41 versus 102 min, respectively, as measured by bioassay and 59 and 119 min as measured by enzyme immunoassay (EIA). After i.v. administration, the estimated Vd of IL-2 liposomes was 13-fold smaller than the free cytokine. Intrathoracic (i.tx.), i.p., and s.c. administration of [125I]IL-2 to mice also demonstrated significant depot effects when IL-2 was incorporated into liposomes. These data suggest IL-2 liposomes may provide in vivo immunostimulation superior to the free cytokine due to biodistribution and depot characteristics.</p>","PeriodicalId":77209,"journal":{"name":"Journal of immunotherapy : official journal of the Society for Biological Therapy","volume":"12 1","pages":"19-31"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunotherapy : official journal of the Society for Biological Therapy","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to rapid clearance of interleukin-2 (IL-2), it has had limited effective use as an in vivo immunostimulant. Current experimental and clinical protocols generally must utilize large doses, multiple injections, or continuous infusions of IL-2 in order to achieve significant immunostimulation, often at the expense of systemic toxicity. Therefore, the pharmacodynamics of IL-2 liposomes were investigated. IL-2 liposome incorporation efficiency was 80.4% (SD 5.5); vesicle diameter was 1.65 microns (SD 0.09) as determined by fluorescence-activated cell sorting (FACS). Both formulation (free cytokine vs. IL-2 liposomes) and route of administration were important variables in determination of the biodistribution and pharmacokinetic characteristics of IL-2. When free [125I]IL-2 was given i.v. to mice, only 6.5% was in the blood and 3% in liver and spleen 2 h after injection; on the other hand, at 2 h greater than 70% of i.v. [125I]IL-2 liposomes were detected in the blood, liver, spleen, and lungs. Mean i.v. elimination t1/2 from the blood of rats given 20 x 10(6) U/kg free cytokine or IL-2 liposomes was 41 versus 102 min, respectively, as measured by bioassay and 59 and 119 min as measured by enzyme immunoassay (EIA). After i.v. administration, the estimated Vd of IL-2 liposomes was 13-fold smaller than the free cytokine. Intrathoracic (i.tx.), i.p., and s.c. administration of [125I]IL-2 to mice also demonstrated significant depot effects when IL-2 was incorporated into liposomes. These data suggest IL-2 liposomes may provide in vivo immunostimulation superior to the free cytokine due to biodistribution and depot characteristics.