Nonequispaced Fast Fourier Transform Boost for the Sinkhorn Algorithm

Rajmadan Lakshmanan, A. Pichler, D. Potts
{"title":"Nonequispaced Fast Fourier Transform Boost for the Sinkhorn Algorithm","authors":"Rajmadan Lakshmanan, A. Pichler, D. Potts","doi":"10.1553/etna_vol58s289","DOIUrl":null,"url":null,"abstract":"This contribution features an accelerated computation of the Sinkhorn's algorithm, which approximates the Wasserstein transportation distance, by employing nonequispaced fast Fourier transforms (NFFT). The algorithm proposed allows approximations of the Wasserstein distance by involving not more than $\\mathcal O(n\\log n)$ operations for probability measures supported by~$n$ points. Furthermore, the proposed method avoids expensive allocations of the characterizing matrices. With this numerical acceleration, the transportation distance is accessible to probability measures out of reach so far. Numerical experiments using synthetic and real data affirm the computational advantage and superiority.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol58s289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This contribution features an accelerated computation of the Sinkhorn's algorithm, which approximates the Wasserstein transportation distance, by employing nonequispaced fast Fourier transforms (NFFT). The algorithm proposed allows approximations of the Wasserstein distance by involving not more than $\mathcal O(n\log n)$ operations for probability measures supported by~$n$ points. Furthermore, the proposed method avoids expensive allocations of the characterizing matrices. With this numerical acceleration, the transportation distance is accessible to probability measures out of reach so far. Numerical experiments using synthetic and real data affirm the computational advantage and superiority.
Sinkhorn算法的非均衡快速傅里叶变换增强
这一贡献的特点是加速了Sinkhorn算法的计算,该算法通过采用非均衡快速傅里叶变换(NFFT)来近似Wasserstein传输距离。所提出的算法允许通过涉及不超过$ $数学O(n\log n)$操作来近似Wasserstein距离,这些操作由~$ $n$点支持。此外,该方法避免了特征矩阵的昂贵分配。有了这个数值加速度,运输距离就可以用概率测度得到。综合数据和实际数据的数值实验证实了该方法的计算优势和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信