Evolving offshore wind: A genetic algorithm-based support structure optimization framework for floating wind turbines

M. Hall, B. Buckham, C. Crawford
{"title":"Evolving offshore wind: A genetic algorithm-based support structure optimization framework for floating wind turbines","authors":"M. Hall, B. Buckham, C. Crawford","doi":"10.1109/OCEANS-BERGEN.2013.6608173","DOIUrl":null,"url":null,"abstract":"This paper presents a genetic algorithm-based optimization framework for floating offshore wind turbine support structures. Using a nine-variable support structure parameterization, this framework spans a greater extent of the design space than preexisting optimization approaches in the literature. With a frequency-domain dynamics model that includes linearized hydrodynamic forces, linearized mooring forces, and linearized wind turbine effects, the framework provides a good treatment of the important physical considerations while still being computationally efficient. The genetic algorithm optimization approach provides a unique ability to visualize the design space. Application of the framework to a hypothetical scenario demonstrates the framework's effectiveness and identifies multiple local optima in the design space - some of conventional configurations and others more unusual. By optimizing to minimize both support structure cost and root-mean-square nacelle acceleration and plotting the design exploration in terms of these quantities, a Pareto front can be seen. Clear trends are visible in the designs as one moves along the front: designs with three outer cylinders are best below a cost of $6M, designs with six outer cylinders are best above a cost of $6M, and heave plate size increases with support structure cost. The complexity and unconventional configuration of the Pareto optimal designs may indicate a need for improvement in the framework's cost model.","PeriodicalId":224246,"journal":{"name":"2013 MTS/IEEE OCEANS - Bergen","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 MTS/IEEE OCEANS - Bergen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-BERGEN.2013.6608173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This paper presents a genetic algorithm-based optimization framework for floating offshore wind turbine support structures. Using a nine-variable support structure parameterization, this framework spans a greater extent of the design space than preexisting optimization approaches in the literature. With a frequency-domain dynamics model that includes linearized hydrodynamic forces, linearized mooring forces, and linearized wind turbine effects, the framework provides a good treatment of the important physical considerations while still being computationally efficient. The genetic algorithm optimization approach provides a unique ability to visualize the design space. Application of the framework to a hypothetical scenario demonstrates the framework's effectiveness and identifies multiple local optima in the design space - some of conventional configurations and others more unusual. By optimizing to minimize both support structure cost and root-mean-square nacelle acceleration and plotting the design exploration in terms of these quantities, a Pareto front can be seen. Clear trends are visible in the designs as one moves along the front: designs with three outer cylinders are best below a cost of $6M, designs with six outer cylinders are best above a cost of $6M, and heave plate size increases with support structure cost. The complexity and unconventional configuration of the Pareto optimal designs may indicate a need for improvement in the framework's cost model.
海上风电的发展:基于遗传算法的漂浮式风力发电机支撑结构优化框架
提出了一种基于遗传算法的海上浮式风力机支撑结构优化框架。使用九变量支持结构参数化,该框架跨越了比文献中先前存在的优化方法更大程度的设计空间。该框架采用了包括线性化水动力、线性化系泊力和线性化风力涡轮机效应在内的频域动力学模型,在保证计算效率的同时,很好地处理了重要的物理因素。遗传算法优化方法提供了一种独特的可视化设计空间的能力。将框架应用到一个假设的场景中,证明了框架的有效性,并确定了设计空间中的多个局部最优——一些是常规配置,另一些是不寻常的配置。通过优化以最小化支撑结构成本和机舱加速度,并根据这些量绘制设计探索图,可以看到帕累托前沿。当你沿着前面移动时,可以看到设计中明显的趋势:三个外圆柱体的设计在成本600万美元以下是最好的,六个外圆柱体的设计在成本600万美元以上是最好的,并且随着支撑结构成本的增加,升力板的尺寸也会增加。帕累托最优设计的复杂性和非常规配置可能表明需要改进框架的成本模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信