{"title":"A Machine Learning Middleware For On Demand Grid Services Engineering and Support","authors":"W. Omar, A. Taleb-Bendiab, Y. Karam","doi":"10.5220/0002558200890100","DOIUrl":null,"url":null,"abstract":"Over the coming years, many are anticipating grid computing infrastructure, utilities and services to become an integral part of future socioeconomical fabric. Though, the realisation of such a vision will be very much affected by a host of factors including; cost of access, reliability, dependability and security of grid services. In earnest, autonomic computing model of systems’ self-adaptation, self-management and self-protection has attracted much interest to improving grid computing technology dependability, security whilst reducing cost of operation. A prevailing design model of autonomic computing systems is one of a goal-oriented and model-based architecture, where rules elicited from domain expert knowledge, domain analysis or data mining are embedded in software management systems to provide autonomic systems functions including; self-tuning and/or self-healing. In this paper, however, we argue for the need for unsupervised machine learning utility and associated middleware to capture knowledge sources to improve deliberative reasoning of autonomic middleware and/or grid infrastructure operation. In particular, the paper presents a machine learning middleware service using the well-known Self-Organising Maps (SOM), which is illustrated through a casestudy scenario -intelligent connected home. The SOM service is used to classify types of users and their respective networked appliances usage model (patterns). The models are accessed by our experimental self-managing infrastructure to provide Just-in-Time deployment and activation of required services in line with learnt usage models and baseline architecture of specified services assemblies. The paper concludes with an evaluation and general concluding remarks.","PeriodicalId":297042,"journal":{"name":"Computer Supported Activity Coordination","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Activity Coordination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002558200890100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Over the coming years, many are anticipating grid computing infrastructure, utilities and services to become an integral part of future socioeconomical fabric. Though, the realisation of such a vision will be very much affected by a host of factors including; cost of access, reliability, dependability and security of grid services. In earnest, autonomic computing model of systems’ self-adaptation, self-management and self-protection has attracted much interest to improving grid computing technology dependability, security whilst reducing cost of operation. A prevailing design model of autonomic computing systems is one of a goal-oriented and model-based architecture, where rules elicited from domain expert knowledge, domain analysis or data mining are embedded in software management systems to provide autonomic systems functions including; self-tuning and/or self-healing. In this paper, however, we argue for the need for unsupervised machine learning utility and associated middleware to capture knowledge sources to improve deliberative reasoning of autonomic middleware and/or grid infrastructure operation. In particular, the paper presents a machine learning middleware service using the well-known Self-Organising Maps (SOM), which is illustrated through a casestudy scenario -intelligent connected home. The SOM service is used to classify types of users and their respective networked appliances usage model (patterns). The models are accessed by our experimental self-managing infrastructure to provide Just-in-Time deployment and activation of required services in line with learnt usage models and baseline architecture of specified services assemblies. The paper concludes with an evaluation and general concluding remarks.