A Random Network Generator with Finely Tunable Clustering Coefficient for Small-World Social Networks

W. Guo, Steven B. Kraines
{"title":"A Random Network Generator with Finely Tunable Clustering Coefficient for Small-World Social Networks","authors":"W. Guo, Steven B. Kraines","doi":"10.1109/CASoN.2009.13","DOIUrl":null,"url":null,"abstract":"Many social networks share two generic distinct features: power law distributions of degrees and a high clustering. In some cases, it is difficult to obtain the structure information of real networks. Network generators provide a way to generate test networks for simulation. We present a random network generator to generate test networks with prescribed power law distributions of degrees and a finely tunable average clustering coefficient. The generator is composed of three steps. First, the degree sequences are generated following the given degree power law exponents. Second, the generator constructs a test network with these degree sequences. Third, the test network is modified to meet the prescribed average clustering coefficient as closely as possible. Experiments show the impact of the clustering coefficient on network connectivity using this generator. The comparison with existing random network generators is presented.","PeriodicalId":425748,"journal":{"name":"2009 International Conference on Computational Aspects of Social Networks","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Aspects of Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2009.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Many social networks share two generic distinct features: power law distributions of degrees and a high clustering. In some cases, it is difficult to obtain the structure information of real networks. Network generators provide a way to generate test networks for simulation. We present a random network generator to generate test networks with prescribed power law distributions of degrees and a finely tunable average clustering coefficient. The generator is composed of three steps. First, the degree sequences are generated following the given degree power law exponents. Second, the generator constructs a test network with these degree sequences. Third, the test network is modified to meet the prescribed average clustering coefficient as closely as possible. Experiments show the impact of the clustering coefficient on network connectivity using this generator. The comparison with existing random network generators is presented.
小世界社会网络聚类系数精细可调的随机网络生成器
许多社交网络都有两个明显的共性:度的幂律分布和高度聚类。在某些情况下,很难获得真实网络的结构信息。网络生成器提供了一种生成仿真测试网络的方法。我们提出了一个随机网络生成器来生成具有规定的幂律度分布和精细可调的平均聚类系数的测试网络。发电机由三个步骤组成。首先,根据给定的次幂律指数生成度序列。其次,生成器用这些度序列构造一个测试网络。第三,对测试网络进行修正,使其尽可能满足规定的平均聚类系数。实验表明,使用该生成器的聚类系数对网络连通性的影响。并与现有的随机网络生成器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信