{"title":"A Random Network Generator with Finely Tunable Clustering Coefficient for Small-World Social Networks","authors":"W. Guo, Steven B. Kraines","doi":"10.1109/CASoN.2009.13","DOIUrl":null,"url":null,"abstract":"Many social networks share two generic distinct features: power law distributions of degrees and a high clustering. In some cases, it is difficult to obtain the structure information of real networks. Network generators provide a way to generate test networks for simulation. We present a random network generator to generate test networks with prescribed power law distributions of degrees and a finely tunable average clustering coefficient. The generator is composed of three steps. First, the degree sequences are generated following the given degree power law exponents. Second, the generator constructs a test network with these degree sequences. Third, the test network is modified to meet the prescribed average clustering coefficient as closely as possible. Experiments show the impact of the clustering coefficient on network connectivity using this generator. The comparison with existing random network generators is presented.","PeriodicalId":425748,"journal":{"name":"2009 International Conference on Computational Aspects of Social Networks","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Aspects of Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2009.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Many social networks share two generic distinct features: power law distributions of degrees and a high clustering. In some cases, it is difficult to obtain the structure information of real networks. Network generators provide a way to generate test networks for simulation. We present a random network generator to generate test networks with prescribed power law distributions of degrees and a finely tunable average clustering coefficient. The generator is composed of three steps. First, the degree sequences are generated following the given degree power law exponents. Second, the generator constructs a test network with these degree sequences. Third, the test network is modified to meet the prescribed average clustering coefficient as closely as possible. Experiments show the impact of the clustering coefficient on network connectivity using this generator. The comparison with existing random network generators is presented.