Seeing the Earth in the Cloud: Processing one petabyte of satellite imagery in one day

Michael S. Warren, S. Brumby, S. Skillman, T. Kelton, B. Wohlberg, M. Mathis, R. Chartrand, R. Keisler, M. Johnson
{"title":"Seeing the Earth in the Cloud: Processing one petabyte of satellite imagery in one day","authors":"Michael S. Warren, S. Brumby, S. Skillman, T. Kelton, B. Wohlberg, M. Mathis, R. Chartrand, R. Keisler, M. Johnson","doi":"10.1109/AIPR.2015.7444536","DOIUrl":null,"url":null,"abstract":"The proliferation of transistors has increased the performance of computing systems by over a factor of a million in the past 30 years, and is also dramatically increasing the amount of data in existence, driving improvements in sensor, communication and storage technology. Multi-decadal Earth and planetary remote sensing global datasets at the petabyte (8×1015 bits) scale are now available in commercial clouds (e.g., Google Earth Engine and Amazon NASA NEX), and new commercial satellite constellations are planning to generate petabytes of images per year, providing daily global coverage at a few meters per pixel. Cloud storage with adjacent high-bandwidth compute, combined with recent advances in machine learning for computer vision, is enabling understanding of the world at a scale and at a level of granularity never before feasible. We report here on a computation processing over a petabyte of compressed raw data from 2.8 quadrillion pixels (2.8 petapixels) acquired by the US Landsat and MODIS programs over the past 40 years. Using commodity cloud computing resources, we convert the imagery to a calibrated, georeferenced, multiresolution tiled format suited for machine-learning analysis. We believe ours is the first application to process, in less than a day, on generally available resources, over a petabyte of scientific image data. We report on work using this reprocessed dataset for experiments demonstrating country-scale food production monitoring, an indicator for famine early warning. We apply remote sensing science and machine learning algorithms to detect and classify agricultural crops and then estimate crop yields.","PeriodicalId":440673,"journal":{"name":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2015.7444536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The proliferation of transistors has increased the performance of computing systems by over a factor of a million in the past 30 years, and is also dramatically increasing the amount of data in existence, driving improvements in sensor, communication and storage technology. Multi-decadal Earth and planetary remote sensing global datasets at the petabyte (8×1015 bits) scale are now available in commercial clouds (e.g., Google Earth Engine and Amazon NASA NEX), and new commercial satellite constellations are planning to generate petabytes of images per year, providing daily global coverage at a few meters per pixel. Cloud storage with adjacent high-bandwidth compute, combined with recent advances in machine learning for computer vision, is enabling understanding of the world at a scale and at a level of granularity never before feasible. We report here on a computation processing over a petabyte of compressed raw data from 2.8 quadrillion pixels (2.8 petapixels) acquired by the US Landsat and MODIS programs over the past 40 years. Using commodity cloud computing resources, we convert the imagery to a calibrated, georeferenced, multiresolution tiled format suited for machine-learning analysis. We believe ours is the first application to process, in less than a day, on generally available resources, over a petabyte of scientific image data. We report on work using this reprocessed dataset for experiments demonstrating country-scale food production monitoring, an indicator for famine early warning. We apply remote sensing science and machine learning algorithms to detect and classify agricultural crops and then estimate crop yields.
从云端看地球:一天处理1拍字节的卫星图像
在过去的30年里,晶体管的激增使计算系统的性能提高了100多万倍,同时也极大地增加了现有的数据量,推动了传感器、通信和存储技术的改进。多年来拍字节(8×1015比特)规模的地球和行星遥感全球数据集现在可以在商业云中使用(例如,谷歌地球引擎和亚马逊NASA NEX),新的商业卫星星座正计划每年生成拍字节的图像,以每像素几米的速度提供每日全球覆盖。云存储与相邻的高带宽计算相结合,结合计算机视觉机器学习的最新进展,使人们能够在前所未有的规模和粒度水平上理解世界。我们在这里报告了过去40年来美国Landsat和MODIS项目获取的2.8千万亿像素(2.8拍像素)压缩原始数据的计算处理。使用商品云计算资源,我们将图像转换为适合机器学习分析的校准,地理参考,多分辨率平铺格式。我们相信我们的应用程序是第一个在不到一天的时间内,在一般可用的资源上,处理超过1拍字节的科学图像数据的应用程序。我们报告了使用这个重新处理的数据集进行实验的工作,展示了国家规模的粮食生产监测,这是饥荒早期预警的一个指标。我们应用遥感科学和机器学习算法来检测和分类农作物,然后估计作物产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信