Sequential Quantum Monte-Carlo for Tracking of Indistinguishable Targets

M. Ulmke
{"title":"Sequential Quantum Monte-Carlo for Tracking of Indistinguishable Targets","authors":"M. Ulmke","doi":"10.1109/SDF.2018.8547148","DOIUrl":null,"url":null,"abstract":"For indistinguishable targets, the probability density function is symmetric under exchange of the target labels and can be formulated as the square of a symmetric or antisymmetric real-valued wave function. [1] Anti-symmetry implicitly describes objects that cannot share the same physical state at the same time-a property macroscopic real world objects possess. Based on the approach in [1], we develop a sequential Monte Carlo method that propagates and updates the anti-symmetric wave function. Anti-symmetry is maintained using an approximation in the time update step. The algorithm is closely related to Quantum Monte Carlo methods applied in nuclear and condensed matter physics. Preliminary results for a simple two-target scenarios are presented and limitations and possible further developments are discussed.","PeriodicalId":357592,"journal":{"name":"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2018.8547148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For indistinguishable targets, the probability density function is symmetric under exchange of the target labels and can be formulated as the square of a symmetric or antisymmetric real-valued wave function. [1] Anti-symmetry implicitly describes objects that cannot share the same physical state at the same time-a property macroscopic real world objects possess. Based on the approach in [1], we develop a sequential Monte Carlo method that propagates and updates the anti-symmetric wave function. Anti-symmetry is maintained using an approximation in the time update step. The algorithm is closely related to Quantum Monte Carlo methods applied in nuclear and condensed matter physics. Preliminary results for a simple two-target scenarios are presented and limitations and possible further developments are discussed.
序列量子蒙特卡罗算法用于不可区分目标的跟踪
对于难以区分的目标,在目标标签交换下,概率密度函数是对称的,可以表示为对称或反对称实值波函数的平方。[1]反对称隐含地描述了物体不能同时拥有相同的物理状态——这是宏观现实世界物体所拥有的属性。基于[1]中的方法,我们开发了一种传播和更新反对称波函数的顺序蒙特卡罗方法。在时间更新步骤中使用近似来保持不对称。该算法与核物理和凝聚态物理中应用的量子蒙特卡罗方法密切相关。提出了简单双目标情景的初步结果,并讨论了局限性和可能的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信