Implementing Multiclass Classification to find the Optimal Machine Learning Model for Forecasting Malicious URLs

R. J. Samuel Raj, S. Anantha Babu, Helen Josephine V L, Varalatchoumy M, C. Kathirvel
{"title":"Implementing Multiclass Classification to find the Optimal Machine Learning Model for Forecasting Malicious URLs","authors":"R. J. Samuel Raj, S. Anantha Babu, Helen Josephine V L, Varalatchoumy M, C. Kathirvel","doi":"10.1109/ICCMC53470.2022.9754005","DOIUrl":null,"url":null,"abstract":"Web attacks such as spamming, phishing, and malware are common on the Internet. When an unsuspecting user hits the URL, the user becomes a victim of the assaults, which have significant consequences for commercial, finance, and social networking sites. Lexical features, host-based features, content-based features, DNS features, popularity features, and other discriminative features are used to generate a decent feature representation of the URL. URL dataset is collected from ISCX-URL. The goal of this research is to create a multi-class classification model that can categorise URLs as a possible threat to system security by combining several criteria to get the optimal Machine Learning Model.","PeriodicalId":345346,"journal":{"name":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC53470.2022.9754005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Web attacks such as spamming, phishing, and malware are common on the Internet. When an unsuspecting user hits the URL, the user becomes a victim of the assaults, which have significant consequences for commercial, finance, and social networking sites. Lexical features, host-based features, content-based features, DNS features, popularity features, and other discriminative features are used to generate a decent feature representation of the URL. URL dataset is collected from ISCX-URL. The goal of this research is to create a multi-class classification model that can categorise URLs as a possible threat to system security by combining several criteria to get the optimal Machine Learning Model.
实现多类分类,寻找预测恶意url的最佳机器学习模型
垃圾邮件、网络钓鱼和恶意软件等网络攻击在互联网上很常见。当不知情的用户点击该URL时,该用户将成为攻击的受害者,这将对商业、金融和社会网络站点造成严重后果。词法特征、基于主机的特征、基于内容的特征、DNS特征、流行度特征和其他判别性特征用于生成URL的合适特征表示。URL数据集从ISCX-URL中收集。本研究的目标是创建一个多类分类模型,通过结合几个标准来获得最佳机器学习模型,该模型可以将url分类为可能对系统安全构成威胁的url。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信