Dynamic Graph Convolutional Network for Long Short-term Traffic Flow Prediction

Yan Wang, Q. Ren
{"title":"Dynamic Graph Convolutional Network for Long Short-term Traffic Flow Prediction","authors":"Yan Wang, Q. Ren","doi":"10.1109/ISCC55528.2022.9912866","DOIUrl":null,"url":null,"abstract":"Traffic prediction is a critical component of intel-ligent transportation systems. However, highly non-linear and dynamical spatial-temporal correlations propose challenges for traffic prediction, especially long-term prediction. We propose a spatial-temporal channel-attention based graph convolutional network (STCAGCN) to improve the accuracy of both long-term and short-term traffic flow prediction. Firstly we design an attention mechanism to learn complex temporal and spatial correlations. Then we develop the stacked spatial-temporal convo-lution layer to model complex temporal and spatial correlations. Each spatial-temporal convolution layer is composed of a gated time convolution network and a graph convolution network. We develop a gated time convolution network to model non-linear temporal correlations, which process long sequences through stacked dilated convolution. Moreover, the graph convolution network exploits the hidden spatial correlations via learning self-adaptive adjacency matrix. Experiment results on real-world datasets demonstrate that the proposed STCAGCN model obtains improvements over the state-of-the-art, especially for long-term traffic flow prediction.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Traffic prediction is a critical component of intel-ligent transportation systems. However, highly non-linear and dynamical spatial-temporal correlations propose challenges for traffic prediction, especially long-term prediction. We propose a spatial-temporal channel-attention based graph convolutional network (STCAGCN) to improve the accuracy of both long-term and short-term traffic flow prediction. Firstly we design an attention mechanism to learn complex temporal and spatial correlations. Then we develop the stacked spatial-temporal convo-lution layer to model complex temporal and spatial correlations. Each spatial-temporal convolution layer is composed of a gated time convolution network and a graph convolution network. We develop a gated time convolution network to model non-linear temporal correlations, which process long sequences through stacked dilated convolution. Moreover, the graph convolution network exploits the hidden spatial correlations via learning self-adaptive adjacency matrix. Experiment results on real-world datasets demonstrate that the proposed STCAGCN model obtains improvements over the state-of-the-art, especially for long-term traffic flow prediction.
基于动态图卷积网络的长短期交通流预测
交通预测是智能交通系统的重要组成部分。然而,高度非线性和动态的时空相关性为交通预测,特别是长期预测提出了挑战。为了提高长期和短期交通流预测的准确性,我们提出了一种基于时空通道注意力的图卷积网络(STCAGCN)。首先,我们设计了一个注意机制来学习复杂的时空相关性。然后,我们开发了堆叠的时空卷积层来模拟复杂的时空相关性。每个时空卷积层由一个门控时间卷积网络和一个图卷积网络组成。我们开发了一个门控时间卷积网络来模拟非线性时间相关性,该网络通过堆叠扩展卷积处理长序列。此外,图卷积网络通过学习自适应邻接矩阵来挖掘隐藏的空间相关性。在真实数据集上的实验结果表明,所提出的STCAGCN模型比最先进的模型得到了改进,特别是在长期交通流预测方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信