A Semantic++ MapReduce: A Preliminary Report

Guigang Zhang, Jian Wang, Weixing Huang, C. Li, Yong Zhang, Chunxiao Xing
{"title":"A Semantic++ MapReduce: A Preliminary Report","authors":"Guigang Zhang, Jian Wang, Weixing Huang, C. Li, Yong Zhang, Chunxiao Xing","doi":"10.1109/ICSC.2014.63","DOIUrl":null,"url":null,"abstract":"Big data processing is one of the hot scientific issues in the current social development. MapReduce is an important foundation for big data processing. In this paper, we propose a semantic++ MapReduce. This study includes four parts. (1) Semantic++ extraction and management for big data. We will do research about the automatically extracting, labeling and management methods for big data's semantic++ information. (2) SMRPL (Semantic++ MapReduce Programming Language). It is a declarative programming language which is close to the human thinking and be used to program for big data's applications. (3) Semantic++ MapReduce compilation methods. (4) Semantic++ MapReduce computing technology. It includes three parts. 1) Analysis of semantic++ index information of the data block, the description of the semantic++ index structure and semantic++ index information automatic loading method. 2) Analysis of all kinds of semantic++ operations such as semantic++ sorting, semantic++ grouping, semantic+++ merging and semantic++ query in the map and reduce phases. 3) Shuffle scheduling strategy based on semantic++ techniques. This paper's research will optimize the MapReduce and enhance its processing efficiency and ability. Our research will provide theoretical and technological accumulation for intelligent processing of big data.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"97 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Big data processing is one of the hot scientific issues in the current social development. MapReduce is an important foundation for big data processing. In this paper, we propose a semantic++ MapReduce. This study includes four parts. (1) Semantic++ extraction and management for big data. We will do research about the automatically extracting, labeling and management methods for big data's semantic++ information. (2) SMRPL (Semantic++ MapReduce Programming Language). It is a declarative programming language which is close to the human thinking and be used to program for big data's applications. (3) Semantic++ MapReduce compilation methods. (4) Semantic++ MapReduce computing technology. It includes three parts. 1) Analysis of semantic++ index information of the data block, the description of the semantic++ index structure and semantic++ index information automatic loading method. 2) Analysis of all kinds of semantic++ operations such as semantic++ sorting, semantic++ grouping, semantic+++ merging and semantic++ query in the map and reduce phases. 3) Shuffle scheduling strategy based on semantic++ techniques. This paper's research will optimize the MapReduce and enhance its processing efficiency and ability. Our research will provide theoretical and technological accumulation for intelligent processing of big data.
语义++ MapReduce:初步报告
大数据处理是当前社会发展中的热点科学问题之一。MapReduce是大数据处理的重要基础。在本文中,我们提出了一个语义++ MapReduce。本研究包括四个部分。(1)大数据语义++提取与管理。研究大数据语义++信息的自动提取、标注和管理方法。(2) SMRPL (Semantic++ MapReduce Programming Language)。它是一种接近人类思维的声明式编程语言,可用于大数据应用的编程。(3) Semantic++ MapReduce编译方法。(4) Semantic++ MapReduce计算技术。它包括三个部分。1)分析了数据块的语义++索引信息,描述了语义++索引结构和语义++索引信息自动加载方法。2)分析map和reduce阶段的各种语义++操作,如语义++排序、语义++分组、语义++合并、语义++查询。3)基于语义++技术的Shuffle调度策略。本文的研究将对MapReduce进行优化,提高其处理效率和处理能力。我们的研究将为大数据的智能处理提供理论和技术积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信