LSTM Based on the Classification of Emotion about User Evaluation on Shopping Site

Rong Xiao, Xiaohui Cui, Peipei Zhou, Wanfeng Ge
{"title":"LSTM Based on the Classification of Emotion about User Evaluation on Shopping Site","authors":"Rong Xiao, Xiaohui Cui, Peipei Zhou, Wanfeng Ge","doi":"10.1109/IIKI.2016.77","DOIUrl":null,"url":null,"abstract":"The user evaluation of shopping websites always has huge amounts of data which is a waste of manpower and material resources. Aiming at this problem, this paper puts forward a model based on LSTM and word vectors [1]. LSTM can be a very good solution because of the long distance learning of the neural nodes to forward neural nodes of declining awareness, thus LSTM neural network model can be better to finish the task of user sentiment analysis.","PeriodicalId":371106,"journal":{"name":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIKI.2016.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The user evaluation of shopping websites always has huge amounts of data which is a waste of manpower and material resources. Aiming at this problem, this paper puts forward a model based on LSTM and word vectors [1]. LSTM can be a very good solution because of the long distance learning of the neural nodes to forward neural nodes of declining awareness, thus LSTM neural network model can be better to finish the task of user sentiment analysis.
基于情感分类的购物网站用户评价LSTM
购物网站的用户评价总是有大量的数据,这是一种人力物力的浪费。针对这一问题,本文提出了一种基于LSTM和词向量的模型[1]。LSTM可以是一个很好的解决方案,因为LSTM神经网络模型可以远程学习神经节点转发意识下降的神经节点,因此LSTM神经网络模型可以更好地完成用户情感分析的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信