Integrating multiple knowledge sources using genetic algorithm applied to hierarchically structured sensor data

T. Sawaragi, J. Umemura, O. Katai, S. Iwai
{"title":"Integrating multiple knowledge sources using genetic algorithm applied to hierarchically structured sensor data","authors":"T. Sawaragi, J. Umemura, O. Katai, S. Iwai","doi":"10.1109/MFI.1994.398427","DOIUrl":null,"url":null,"abstract":"The paper presents a new approach for implementing a human expert's proficient interpretation skills for data and knowledge fusion in signal understanding tasks. The authors start by recognizing the fact that signal interpretation is attributed much to a human expert's domain-specific, pattern-perceiving capability of grasping raw signals by structured representations having multiple levels of abstraction. First, they attempt to organize such structured representations by using the hierarchical clustering method of data analysis. Then, based on these representations they formulate a human expert's interpretation skills as an activity of searching for an optimum combination of those perceptual units within that structured representation space being constrained by the situational data. In order to implement this activity, they introduce a genetic algorithm and apply it to the structured representation space assimilating a human analyst's creative interpreting task of flexibly shifting the focal view of attention from the coarse to the precise. They implement a working system for signal understanding of the remote sensing data of seismic prospecting.<<ETX>>","PeriodicalId":133630,"journal":{"name":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1994.398427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a new approach for implementing a human expert's proficient interpretation skills for data and knowledge fusion in signal understanding tasks. The authors start by recognizing the fact that signal interpretation is attributed much to a human expert's domain-specific, pattern-perceiving capability of grasping raw signals by structured representations having multiple levels of abstraction. First, they attempt to organize such structured representations by using the hierarchical clustering method of data analysis. Then, based on these representations they formulate a human expert's interpretation skills as an activity of searching for an optimum combination of those perceptual units within that structured representation space being constrained by the situational data. In order to implement this activity, they introduce a genetic algorithm and apply it to the structured representation space assimilating a human analyst's creative interpreting task of flexibly shifting the focal view of attention from the coarse to the precise. They implement a working system for signal understanding of the remote sensing data of seismic prospecting.<>
将遗传算法应用于分层结构的传感器数据集成多个知识来源
本文提出了一种实现人类专家对信号理解任务中数据和知识融合的熟练解释技能的新方法。作者首先认识到这样一个事实,即信号解释在很大程度上归功于人类专家的特定领域、模式感知能力,即通过具有多个抽象层次的结构化表示来抓取原始信号。首先,他们尝试使用数据分析的分层聚类方法来组织这种结构化表示。然后,基于这些表征,他们将人类专家的解释技能制定为在受情境数据约束的结构化表征空间中搜索这些感知单元的最佳组合的活动。为了实现这一活动,他们引入了一种遗传算法,并将其应用于结构化的表示空间,吸收了人类分析师的创造性解释任务,即灵活地将注意力的焦点从粗糙转移到精确。他们实现了一个用于地震勘探遥感数据信号理解的工作系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信