Towards Diversified Local Users Identification Using Location Based Social Networks

Chao Huang, Dong Wang, Shenglong Zhu
{"title":"Towards Diversified Local Users Identification Using Location Based Social Networks","authors":"Chao Huang, Dong Wang, Shenglong Zhu","doi":"10.1145/3110025.3110159","DOIUrl":null,"url":null,"abstract":"Identifying a set of diversified users who are local residents in a city is an important task for a wide spectrum of applications such as target ads of local business, surveys and interviews, and personalized recommendations. While many previous studies have investigated the problem of identifying the local users in a given area using online social network information (e.g., geotagged posts), few methods have been developed to solve the diversified user identification problem. In this paper, we propose a new analytical framework, Diversified Local Users Finder (DLUF), to accurately identify a set of diversified local users using a principled approach. In particular, the DLUF scheme first defines a new distance metric that measures the diversity between local users from physical dimension. The DLUF scheme then provides a solution to find the set of local users with maximum diversity. The performance of DLUF scheme is compared to several representative baselines using two real world datasets obtained from Foursquare application. We observe that the DLUF scheme accurately identifies the local users with a great diversity and significantly outperforms the compared baselines.","PeriodicalId":399660,"journal":{"name":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110025.3110159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Identifying a set of diversified users who are local residents in a city is an important task for a wide spectrum of applications such as target ads of local business, surveys and interviews, and personalized recommendations. While many previous studies have investigated the problem of identifying the local users in a given area using online social network information (e.g., geotagged posts), few methods have been developed to solve the diversified user identification problem. In this paper, we propose a new analytical framework, Diversified Local Users Finder (DLUF), to accurately identify a set of diversified local users using a principled approach. In particular, the DLUF scheme first defines a new distance metric that measures the diversity between local users from physical dimension. The DLUF scheme then provides a solution to find the set of local users with maximum diversity. The performance of DLUF scheme is compared to several representative baselines using two real world datasets obtained from Foursquare application. We observe that the DLUF scheme accurately identifies the local users with a great diversity and significantly outperforms the compared baselines.
利用基于位置的社交网络实现多样化的本地用户识别
识别一组多样化的用户(即城市中的本地居民)对于广泛的应用程序(如本地企业的目标广告、调查和访谈以及个性化推荐)是一项重要任务。虽然已有许多研究探讨了利用在线社交网络信息(如地理标记帖子)识别给定地区的本地用户问题,但解决多样化用户识别问题的方法很少。在本文中,我们提出了一个新的分析框架,多元化本地用户查找器(DLUF),以准确地识别一组多样化的本地用户。特别是,该方案首先定义了一个新的距离度量,从物理维度度量本地用户之间的多样性。然后,dlf方案提供了一种找到具有最大多样性的本地用户集的解决方案。使用从Foursquare应用程序中获得的两个真实世界数据集,将该方案的性能与几个具有代表性的基线进行了比较。我们观察到,该方案准确地识别了具有很大多样性的本地用户,并且显著优于比较基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信