An inertial three-operator splitting algorithm with applications to image inpainting

Fuying Cui, Yuchao Tang, Yang Yang
{"title":"An inertial three-operator splitting algorithm with applications to image inpainting","authors":"Fuying Cui, Yuchao Tang, Yang Yang","doi":"10.23952/asvao.1.2019.2.03","DOIUrl":null,"url":null,"abstract":"The three-operators splitting algorithm is a popular operator splitting method for finding the zeros of the sum of three maximally monotone operators, with one of which is cocoercive operator. In this paper, we propose a class of inertial three-operator splitting algorithm. The convergence of the proposed algorithm is proved by applying the inertial Krasnoselskii-Mann iteration under certain conditions on the iterative parameters in real Hilbert spaces. As applications, we develop an inertial three-operator splitting algorithm to solve the convex minimization problem of the sum of three convex functions, where one of them is differentiable with Lipschitz continuous gradient. Finally, we conduct numerical experiments on a constrained image inpainting problem with nuclear norm regularization. Numerical results demonstrate the advantage of the proposed inertial three-operator splitting algorithms.","PeriodicalId":362333,"journal":{"name":"Applied Set-Valued Analysis and Optimization","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Set-Valued Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/asvao.1.2019.2.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The three-operators splitting algorithm is a popular operator splitting method for finding the zeros of the sum of three maximally monotone operators, with one of which is cocoercive operator. In this paper, we propose a class of inertial three-operator splitting algorithm. The convergence of the proposed algorithm is proved by applying the inertial Krasnoselskii-Mann iteration under certain conditions on the iterative parameters in real Hilbert spaces. As applications, we develop an inertial three-operator splitting algorithm to solve the convex minimization problem of the sum of three convex functions, where one of them is differentiable with Lipschitz continuous gradient. Finally, we conduct numerical experiments on a constrained image inpainting problem with nuclear norm regularization. Numerical results demonstrate the advantage of the proposed inertial three-operator splitting algorithms.
一种惯性三算子分割算法及其在图像绘制中的应用
三算子分裂算法是一种常用的算子分裂方法,用于寻找三个最大单调算子的和的零点,其中一个是coercive算子。本文提出了一类惯性三算子分裂算法。通过对实数Hilbert空间中迭代参数在一定条件下的惯性Krasnoselskii-Mann迭代,证明了该算法的收敛性。作为应用,我们开发了一种惯性三算子分裂算法来解决三个凸函数和的凸极小化问题,其中一个凸函数可导于Lipschitz连续梯度。最后,我们对核范数正则化的约束图像喷漆问题进行了数值实验。数值结果表明了所提出的惯性三算子分裂算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信