LeHDC

Shijin Duan, Yejia Liu, Shaolei Ren, Xiaolin Xu
{"title":"LeHDC","authors":"Shijin Duan, Yejia Liu, Shaolei Ren, Xiaolin Xu","doi":"10.1145/3489517.3530593","DOIUrl":null,"url":null,"abstract":"Thanks to the tiny storage and efficient execution, hyperdimensional Computing (HDC) is emerging as a lightweight learning framework on resource-constrained hardware. Nonetheless, the existing HDC training relies on various heuristic methods, significantly limiting their inference accuracy. In this paper, we propose a new HDC framework, called LeHDC, which leverages a principled learning approach to improve the model accuracy. Concretely, LeHDC maps the existing HDC framework into an equivalent Binary Neural Network architecture, and employs a corresponding training strategy to minimize the training loss. Experimental validation shows that LeHDC outperforms previous HDC training strategies and can improve on average the inference accuracy over 15% compared to the baseline HDC.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Thanks to the tiny storage and efficient execution, hyperdimensional Computing (HDC) is emerging as a lightweight learning framework on resource-constrained hardware. Nonetheless, the existing HDC training relies on various heuristic methods, significantly limiting their inference accuracy. In this paper, we propose a new HDC framework, called LeHDC, which leverages a principled learning approach to improve the model accuracy. Concretely, LeHDC maps the existing HDC framework into an equivalent Binary Neural Network architecture, and employs a corresponding training strategy to minimize the training loss. Experimental validation shows that LeHDC outperforms previous HDC training strategies and can improve on average the inference accuracy over 15% compared to the baseline HDC.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信