{"title":"A Dynamic Transmit Coil for Wirelessly Powering Small ME Transducer based Biomedical Implants","authors":"Erik Andersen, Orpita Saha, S. Roundy","doi":"10.1109/PowerMEMS54003.2021.9658362","DOIUrl":null,"url":null,"abstract":"Magnetoelectric transducers (ME) wireless power transfer systems (WPTS) offer a way to power small biomedical implants. However, if the ME receiver becomes misaligned the wireless power delivered to the load can be dramatically reduced. A dynamic transmit coil using actuators and physically rotating or moving the transmit coil reduces the misalignment between the transmitter and the receiver. We model the expected power gains a WPTS has using a dynamic transmitter versus a static transmitter (a coil that does not move or rotate). We experimentally show that adding a single servo motor to make a dynamic transmit coil increases the power available to load by a factor of 2.4 over an otherwise identical static transmit coil for a given misaligned ME receiver in a WPTS.","PeriodicalId":165158,"journal":{"name":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS54003.2021.9658362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetoelectric transducers (ME) wireless power transfer systems (WPTS) offer a way to power small biomedical implants. However, if the ME receiver becomes misaligned the wireless power delivered to the load can be dramatically reduced. A dynamic transmit coil using actuators and physically rotating or moving the transmit coil reduces the misalignment between the transmitter and the receiver. We model the expected power gains a WPTS has using a dynamic transmitter versus a static transmitter (a coil that does not move or rotate). We experimentally show that adding a single servo motor to make a dynamic transmit coil increases the power available to load by a factor of 2.4 over an otherwise identical static transmit coil for a given misaligned ME receiver in a WPTS.