M. Straat, M. Kaden, M. Gay, T. Villmann, A. Lampe, U. Seiffert, Michael Biehl, F. Melchert
{"title":"Prototypes and matrix relevance learning in complex fourier space","authors":"M. Straat, M. Kaden, M. Gay, T. Villmann, A. Lampe, U. Seiffert, Michael Biehl, F. Melchert","doi":"10.1109/WSOM.2017.8020019","DOIUrl":null,"url":null,"abstract":"In this contribution, we consider the classification of time-series and similar functional data which can be represented in complex Fourier coefficient space. We apply versions of Learning Vector Quantization (LVQ) which are suitable for complex-valued data, based on the so-called Wirtinger calculus. It makes possible the formulation of gradient based update rules in the framework of cost-function based Generalized Matrix Relevance LVQ (GMLVQ). Alternatively, we consider the concatenation of real and imaginary parts of Fourier coefficients in a real-valued feature vector and the classification of time domain representations by means of conventional GMLVQ.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this contribution, we consider the classification of time-series and similar functional data which can be represented in complex Fourier coefficient space. We apply versions of Learning Vector Quantization (LVQ) which are suitable for complex-valued data, based on the so-called Wirtinger calculus. It makes possible the formulation of gradient based update rules in the framework of cost-function based Generalized Matrix Relevance LVQ (GMLVQ). Alternatively, we consider the concatenation of real and imaginary parts of Fourier coefficients in a real-valued feature vector and the classification of time domain representations by means of conventional GMLVQ.