{"title":"Detecting Feedback Vertex Sets of Size k in O⋆ (2.7k) Time","authors":"Jason Li, Jesper Nederlof","doi":"10.1145/3504027","DOIUrl":null,"url":null,"abstract":"In the Feedback Vertex Set (FVS) problem, one is given an undirected graph G and an integer k, and one needs to determine whether there exists a set of k vertices that intersects all cycles of G (a so-called feedback vertex set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an excellent testbed for many important algorithmic techniques in the field such as Iterative Compression [Guo et al. (JCSS’06)], Randomized Branching [Becker et al. (J. Artif. Intell. Res’00)] and Cut&Count [Cygan et al. (FOCS’11)]. In particular, there has been a long race for the smallest dependence f(k) in run times of the type O⋆ (f(k)), where the O⋆ notation omits factors polynomial in n. This race seemed to have reached a conclusion in 2011, when a randomized O⋆ (3k) time algorithm based on Cut&Count was introduced. In this work, we show the contrary and give a O⋆ (2.7k) time randomized algorithm. Our algorithm combines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set of size k of bounded average degree, a tree decomposition of width (1-Ω (1))k can be found in polynomial time. Second, we give a randomized branching strategy inspired by the one from [Becker et al. (J. Artif. Intell. Res’00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run time improvements by employing fast matrix multiplication.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3504027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
In the Feedback Vertex Set (FVS) problem, one is given an undirected graph G and an integer k, and one needs to determine whether there exists a set of k vertices that intersects all cycles of G (a so-called feedback vertex set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an excellent testbed for many important algorithmic techniques in the field such as Iterative Compression [Guo et al. (JCSS’06)], Randomized Branching [Becker et al. (J. Artif. Intell. Res’00)] and Cut&Count [Cygan et al. (FOCS’11)]. In particular, there has been a long race for the smallest dependence f(k) in run times of the type O⋆ (f(k)), where the O⋆ notation omits factors polynomial in n. This race seemed to have reached a conclusion in 2011, when a randomized O⋆ (3k) time algorithm based on Cut&Count was introduced. In this work, we show the contrary and give a O⋆ (2.7k) time randomized algorithm. Our algorithm combines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set of size k of bounded average degree, a tree decomposition of width (1-Ω (1))k can be found in polynomial time. Second, we give a randomized branching strategy inspired by the one from [Becker et al. (J. Artif. Intell. Res’00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run time improvements by employing fast matrix multiplication.