SAR multi-frequency observations of vegetation in agricultural and mountain areas

S. Paloscia, G. Fontanelli, A. Lapini, E. Santi, S. Pettinato, C. Notarnicola, Eugenia Chiarito, G. Cuozzo, D. Tapete, F. Cigna
{"title":"SAR multi-frequency observations of vegetation in agricultural and mountain areas","authors":"S. Paloscia, G. Fontanelli, A. Lapini, E. Santi, S. Pettinato, C. Notarnicola, Eugenia Chiarito, G. Cuozzo, D. Tapete, F. Cigna","doi":"10.23919/URSIGASS49373.2020.9232372","DOIUrl":null,"url":null,"abstract":"In this paper, the potential of space-borne Synthetic Aperture Radar (SAR) sensors combined with optical ones has been exploited by analyzing datasets collected on two vegetated areas in Italy, by using COSMO-SkyMed X-band and Sentinel-1 C-band SAR, PRISMA hyperspectral and Sentinel-2 multispectral imagery, combined with field measurements acquired with spectroradiometers. On the mountain area in Alto Adige, a biomass estimation approach was developed by combining Sentinel-1 SAR and spectroradiometer hyperspectral data. On Val d’Elsa area in Tuscany, COSMO-SkyMed StripMap HIMAGE and Sentinel-1 Interferometric Wide swath mode SAR data have been integrated with Sentinel-2 imagery for improving the classification of agricultural crops. Convolutional Neural Networks (CNN) have been used for the classification of agricultural areas using these three sensors.","PeriodicalId":438881,"journal":{"name":"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS49373.2020.9232372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the potential of space-borne Synthetic Aperture Radar (SAR) sensors combined with optical ones has been exploited by analyzing datasets collected on two vegetated areas in Italy, by using COSMO-SkyMed X-band and Sentinel-1 C-band SAR, PRISMA hyperspectral and Sentinel-2 multispectral imagery, combined with field measurements acquired with spectroradiometers. On the mountain area in Alto Adige, a biomass estimation approach was developed by combining Sentinel-1 SAR and spectroradiometer hyperspectral data. On Val d’Elsa area in Tuscany, COSMO-SkyMed StripMap HIMAGE and Sentinel-1 Interferometric Wide swath mode SAR data have been integrated with Sentinel-2 imagery for improving the classification of agricultural crops. Convolutional Neural Networks (CNN) have been used for the classification of agricultural areas using these three sensors.
农业和山区植被的SAR多频观测
本文利用COSMO-SkyMed x波段和Sentinel-1 c波段合成孔径雷达(SAR)、PRISMA高光谱和Sentinel-2多光谱图像,结合光谱辐射计获得的野外测量数据,对意大利两个植被区收集的数据集进行了分析,挖掘了星载合成孔径雷达(SAR)传感器与光学传感器相结合的潜力。在上阿迪热山区,将Sentinel-1 SAR数据与光谱辐射计高光谱数据相结合,建立了生物量估算方法。在托斯卡纳的Val d 'Elsa地区,cosmos - skymed StripMap HIMAGE和Sentinel-1干涉宽幅模式SAR数据与Sentinel-2图像相结合,以改进农作物分类。卷积神经网络(CNN)已被用于使用这三种传感器对农业区域进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信