{"title":"Exploiting a Large-scale Knowledge Graph for Question Generation in Food Preference Interview Systems","authors":"Jie Zeng, Y. Nakano","doi":"10.1145/3379336.3381504","DOIUrl":null,"url":null,"abstract":"This paper presents a dialogue system that acquires user's food preference through a conversation. First, we proposed a method for selecting relevant topics and generating questions based on Freebase, a large-scale knowledge graph. To select relevant topics, using the Wikipedia corpus, we created a topic-embedding model that represents the correlation among topics. For missing entities in Freebase, knowledge completion was applied using knowledge graph embedding. We incorporated these functions into a dialogue system and conducted a user study. The results reveal that the proposed dialogue system more efficiently elicited words related to food and common nouns, and these words were highly correlated in a word embedding space.","PeriodicalId":335081,"journal":{"name":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379336.3381504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents a dialogue system that acquires user's food preference through a conversation. First, we proposed a method for selecting relevant topics and generating questions based on Freebase, a large-scale knowledge graph. To select relevant topics, using the Wikipedia corpus, we created a topic-embedding model that represents the correlation among topics. For missing entities in Freebase, knowledge completion was applied using knowledge graph embedding. We incorporated these functions into a dialogue system and conducted a user study. The results reveal that the proposed dialogue system more efficiently elicited words related to food and common nouns, and these words were highly correlated in a word embedding space.