Riemannian foliations with Ehresmann connection

N. I. Zhukova
{"title":"Riemannian foliations with Ehresmann connection","authors":"N. I. Zhukova","doi":"10.15507/2079-6900.20.201804.395-407","DOIUrl":null,"url":null,"abstract":"It is shown that the structural theory of Molino for Riemannian foliations on compact manifolds and complete Riemannian manifolds may be generalized to a Riemannian foliations with Ehresmann connection. Within this generalization there are no restrictions on the codimension of the foliation and on the dimension of the foliated manifold. For a Riemannian foliation (M,F) with Ehresmann connection it is proved that the closure of any leaf forms a minimal set, the family of all such closures forms a singular Riemannian foliation (M,F¯¯¯¯). It is shown that in M there exists a connected open dense F¯¯¯¯-saturated subset M0 such that the induced foliation (M0,F¯¯¯¯|M0) is formed by fibers of a locally trivial bundle over some smooth Hausdorff manifold. The equivalence of some properties of Riemannian foliations (M,F) with Ehresmann connection is proved. In particular, it is shown that the structural Lie algebra of (M,F) is equal to zero if and only if the leaf space of (M,F) is naturally endowed with a smooth orbifold structure. Constructed examples show that for foliations with transversally linear connection and for conformal foliations the similar statements are not true in general.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.20.201804.395-407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It is shown that the structural theory of Molino for Riemannian foliations on compact manifolds and complete Riemannian manifolds may be generalized to a Riemannian foliations with Ehresmann connection. Within this generalization there are no restrictions on the codimension of the foliation and on the dimension of the foliated manifold. For a Riemannian foliation (M,F) with Ehresmann connection it is proved that the closure of any leaf forms a minimal set, the family of all such closures forms a singular Riemannian foliation (M,F¯¯¯¯). It is shown that in M there exists a connected open dense F¯¯¯¯-saturated subset M0 such that the induced foliation (M0,F¯¯¯¯|M0) is formed by fibers of a locally trivial bundle over some smooth Hausdorff manifold. The equivalence of some properties of Riemannian foliations (M,F) with Ehresmann connection is proved. In particular, it is shown that the structural Lie algebra of (M,F) is equal to zero if and only if the leaf space of (M,F) is naturally endowed with a smooth orbifold structure. Constructed examples show that for foliations with transversally linear connection and for conformal foliations the similar statements are not true in general.
具有Ehresmann连接的黎曼叶
证明了紧流形和完全黎曼流形上黎曼叶的Molino结构理论可以推广到具有Ehresmann连接的黎曼叶。在这个推广中,对叶形的余维数和叶形流形的维数没有限制。对于具有Ehresmann连接的黎曼叶理(M,F),证明了任意叶的闭包构成一个极小集,所有闭包的族构成一个奇异黎曼叶理(M,F¯¯¯)。证明了在M中存在一个连通的开稠密的F¯¯饱和子集M0,使得诱导叶理(M0,F¯¯¯|M0)是由光滑Hausdorff流形上的局部平凡束的纤维形成的。证明了黎曼叶(M,F)的一些性质与Ehresmann连接的等价性。特别地,证明了(M,F)的结构李代数当且仅当(M,F)的叶空间自然具有光滑的轨道结构时等于零。构造的实例表明,对于具有横向线性连接的叶形和保形叶形,类似的陈述一般不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信