Statistical Modeling and Learning for Recognition-Based Handwritten Numeral String Segmentation

Yanjie Wang, Xiabi Liu, Yunde Jia
{"title":"Statistical Modeling and Learning for Recognition-Based Handwritten Numeral String Segmentation","authors":"Yanjie Wang, Xiabi Liu, Yunde Jia","doi":"10.1109/ICDAR.2009.25","DOIUrl":null,"url":null,"abstract":"This paper proposes a recognition based approach to handwritten numeral string segmentation. We consider two classes: numeral strings segmented correctly or not. The feature vectors containing recognition information for numeral strings segmented correctly are assumed to be of the distribution of Gaussian mixture model (GMM). Based on this modeling, the recognition based segmentation is solved under the Max-Min posterior Pseudo-probabilities (MMP) framework of learning Bayesian classifiers. In the training phase, we use the MMP method to learn a posterior pseudo-probability measure function from positive samples and negative samples of numeral strings segmented correctly. In the process of recognition based segmentation, we generate all possible candidate segmentations of an input string through contour and profile analysis, and then compute the posterior pseudo-probabilities of being the numeral string segmented correctly for all the candidate segmentations. The candidate segmentation with the maximum posterior pseudo-probability is taken as the final result. The effectiveness of our approach is demonstrated by the experiments of numeral string segmentation and recognition on the NIST SD19 database.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a recognition based approach to handwritten numeral string segmentation. We consider two classes: numeral strings segmented correctly or not. The feature vectors containing recognition information for numeral strings segmented correctly are assumed to be of the distribution of Gaussian mixture model (GMM). Based on this modeling, the recognition based segmentation is solved under the Max-Min posterior Pseudo-probabilities (MMP) framework of learning Bayesian classifiers. In the training phase, we use the MMP method to learn a posterior pseudo-probability measure function from positive samples and negative samples of numeral strings segmented correctly. In the process of recognition based segmentation, we generate all possible candidate segmentations of an input string through contour and profile analysis, and then compute the posterior pseudo-probabilities of being the numeral string segmented correctly for all the candidate segmentations. The candidate segmentation with the maximum posterior pseudo-probability is taken as the final result. The effectiveness of our approach is demonstrated by the experiments of numeral string segmentation and recognition on the NIST SD19 database.
基于识别的手写体数字字符串分割的统计建模与学习
提出了一种基于识别的手写体数字字符串分割方法。我们考虑两类:正确分割或不正确分割的数字字符串。假设正确分割的包含数字字符串识别信息的特征向量符合高斯混合模型的分布。在此基础上,在学习贝叶斯分类器的Max-Min后验伪概率(MMP)框架下求解基于识别的分割问题。在训练阶段,我们使用MMP方法从正确分割的数字字符串的正样本和负样本中学习后验伪概率度量函数。在基于识别的分割过程中,我们通过轮廓和轮廓分析生成输入字符串的所有可能候选分割,然后计算所有候选分割被正确分割的数字字符串的后验伪概率。将后验伪概率最大的候选分割作为最终结果。通过在NIST SD19数据库上的数字字符串分割和识别实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信