Ray-Tracing MIMO Channel Dataset for Machine Learning Applied to V2V Communication

Daniel Suzuki, A. Oliveira, Luan Gonçalves, I. Correa, A. Klautau, Silvia Lins, Pedro Batista
{"title":"Ray-Tracing MIMO Channel Dataset for Machine Learning Applied to V2V Communication","authors":"Daniel Suzuki, A. Oliveira, Luan Gonçalves, I. Correa, A. Klautau, Silvia Lins, Pedro Batista","doi":"10.1109/LATINCOM56090.2022.10000783","DOIUrl":null,"url":null,"abstract":"Machine learning has become a powerful tool for improving vehicle-to-vehicle (V2V) communication systems, and in general requires large datasets for model training and assessment. However, creating large and realistic datasets using field measurements is challenging due to the large bandwidths involved and usage of multiple antennas. Simulations have been widely adopted to circumvent the relative high cost of measurement campaigns. This paper presents the development of a new public dataset for research within V2V scenarios, of machine learning algorithms that require the MIMO channel for simulation or emulation. The adopted methodology relies on realistic simulations of vehicles traffic in 3D virtual worlds. The paper also analyses the influence of key parameters in the ray-tracing simulation with respect to the tradeoff between accuracy and computational cost. Lastly, the paper discusses results of beam-selection for V2V using machine learning and the presented dataset.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning has become a powerful tool for improving vehicle-to-vehicle (V2V) communication systems, and in general requires large datasets for model training and assessment. However, creating large and realistic datasets using field measurements is challenging due to the large bandwidths involved and usage of multiple antennas. Simulations have been widely adopted to circumvent the relative high cost of measurement campaigns. This paper presents the development of a new public dataset for research within V2V scenarios, of machine learning algorithms that require the MIMO channel for simulation or emulation. The adopted methodology relies on realistic simulations of vehicles traffic in 3D virtual worlds. The paper also analyses the influence of key parameters in the ray-tracing simulation with respect to the tradeoff between accuracy and computational cost. Lastly, the paper discusses results of beam-selection for V2V using machine learning and the presented dataset.
用于机器学习的光线追踪MIMO通道数据集应用于V2V通信
机器学习已经成为改进车对车(V2V)通信系统的强大工具,通常需要大型数据集来进行模型训练和评估。然而,由于涉及大带宽和使用多个天线,使用现场测量创建大型和真实的数据集是具有挑战性的。模拟已被广泛采用,以规避相对较高的测量活动成本。本文介绍了一个新的公共数据集的开发,用于V2V场景下的研究,机器学习算法需要MIMO信道进行模拟或仿真。所采用的方法依赖于在三维虚拟世界中对车辆交通的真实模拟。本文还分析了射线追踪仿真中关键参数对精度和计算成本的影响。最后,本文讨论了利用机器学习和所提供的数据集进行V2V波束选择的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信