Extracting Keywords from Short Government Documents Using Reinforcement Learning

Huimin Cai, Ranran Chen, Xiang Li, Qilin Mu
{"title":"Extracting Keywords from Short Government Documents Using Reinforcement Learning","authors":"Huimin Cai, Ranran Chen, Xiang Li, Qilin Mu","doi":"10.1109/EDSSC.2019.8754386","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a novel approach to extract keywords from massive amount of unlabelled short government documents using reinforcement learning. To guide policy network to keep important words, we introduced the average rate regularization, as the sparsity constraints of the model’s loss function. Analysis on the results shows that the proposed model outperforms the traditional unsupervised keyword extraction approaches on massive amount of unlabelled government document headlines.","PeriodicalId":183887,"journal":{"name":"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2019.8754386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we proposed a novel approach to extract keywords from massive amount of unlabelled short government documents using reinforcement learning. To guide policy network to keep important words, we introduced the average rate regularization, as the sparsity constraints of the model’s loss function. Analysis on the results shows that the proposed model outperforms the traditional unsupervised keyword extraction approaches on massive amount of unlabelled government document headlines.
利用强化学习从政府短文件中提取关键词
在本文中,我们提出了一种使用强化学习从大量未标记的简短政府文件中提取关键字的新方法。为了指导策略网络保留重要词,我们引入了平均率正则化,作为模型损失函数的稀疏性约束。分析结果表明,该模型在大量未标注的政府文件标题上优于传统的无监督关键字提取方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信