Reduced-dimension Subspace Detector Design for FDA-MIMO Radar in Sample-starved Scenarios

Bang Huang, Wen-qin Wang, Weijian Liu, Mingcheng Fu, Zhi Zheng
{"title":"Reduced-dimension Subspace Detector Design for FDA-MIMO Radar in Sample-starved Scenarios","authors":"Bang Huang, Wen-qin Wang, Weijian Liu, Mingcheng Fu, Zhi Zheng","doi":"10.1109/RadarConf2351548.2023.10149614","DOIUrl":null,"url":null,"abstract":"This paper focuses on the detection of a point-like target in sample-starved environments with Gaussian interference, which includes strong main-lobe interference and weak thermal noise for frequency diverse array multiple-input multiple-output (FDA-MIMO) radar. At the design stage, the target signature is only partially known and assumed to lie in a known subspace. To solve the sample-starved problem, we adopt a reduced-dimension method to decrease the requirement of training data via pre-multiplying test and training data by a suitable matrix representing the signal subspace. Then, the generalized likelihood ratio test criterion is applied to come up with a reduced-dimension subspace detector. Numerical results validate the effectiveness of proposed detector.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the detection of a point-like target in sample-starved environments with Gaussian interference, which includes strong main-lobe interference and weak thermal noise for frequency diverse array multiple-input multiple-output (FDA-MIMO) radar. At the design stage, the target signature is only partially known and assumed to lie in a known subspace. To solve the sample-starved problem, we adopt a reduced-dimension method to decrease the requirement of training data via pre-multiplying test and training data by a suitable matrix representing the signal subspace. Then, the generalized likelihood ratio test criterion is applied to come up with a reduced-dimension subspace detector. Numerical results validate the effectiveness of proposed detector.
缺少样本情况下FDA-MIMO雷达的降维子空间探测器设计
本文研究了分频阵列多输入多输出(fad - mimo)雷达在具有强主瓣干扰和弱热噪声的高斯干扰环境下的点目标检测问题。在设计阶段,目标签名只是部分已知的,并且假设它位于已知的子空间中。为了解决样本匮乏的问题,我们采用降维方法,将测试和训练数据用合适的表示信号子空间的矩阵进行预乘,从而减少对训练数据的需求。然后,应用广义似然比检验准则提出了一种降维子空间检测器。数值结果验证了该检测器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信