Using Goal Programming on Estimated Pareto Fronts to Solve Multiobjective Problems

Rodrigo Lankaites Pinheiro, Dario Landa Silva, W. Laesanklang, A. A. Constantino
{"title":"Using Goal Programming on Estimated Pareto Fronts to Solve Multiobjective Problems","authors":"Rodrigo Lankaites Pinheiro, Dario Landa Silva, W. Laesanklang, A. A. Constantino","doi":"10.5220/0006718901320143","DOIUrl":null,"url":null,"abstract":"Modern multiobjective algorithms can be computationally inefficient in producing good approximation sets for highly constrained many-objective problems. Such problems are common in real-world applications where decision-makers need to assess multiple conflicting objectives. Also, different instances of real-world problems often share similar fitness landscapes because key parts of the data are the same across these instances. We we propose a novel methodology that consists of solving one instance of a given problem scenario using computationally expensive multiobjective algorithms to obtain a good approximation set and then using Goal Programming with efficient single-objective algorithms to solve other instances of the same problem scenario. We propose three goal-based objective functions and show that on a real-world home healthcare planning problem the methodology can produce improved results in a shorter computation time.","PeriodicalId":235376,"journal":{"name":"International Conference on Operations Research and Enterprise Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Operations Research and Enterprise Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006718901320143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Modern multiobjective algorithms can be computationally inefficient in producing good approximation sets for highly constrained many-objective problems. Such problems are common in real-world applications where decision-makers need to assess multiple conflicting objectives. Also, different instances of real-world problems often share similar fitness landscapes because key parts of the data are the same across these instances. We we propose a novel methodology that consists of solving one instance of a given problem scenario using computationally expensive multiobjective algorithms to obtain a good approximation set and then using Goal Programming with efficient single-objective algorithms to solve other instances of the same problem scenario. We propose three goal-based objective functions and show that on a real-world home healthcare planning problem the methodology can produce improved results in a shorter computation time.
估计Pareto前沿的目标规划求解多目标问题
对于高度约束的多目标问题,现代多目标算法在产生良好的逼近集方面计算效率低下。这样的问题在决策者需要评估多个相互冲突的目标的实际应用程序中很常见。此外,现实问题的不同实例通常共享相似的适应度景观,因为这些实例中数据的关键部分是相同的。我们提出了一种新的方法,该方法包括使用计算昂贵的多目标算法来解决给定问题场景的一个实例,以获得一个良好的近似集,然后使用目标规划与高效的单目标算法来解决相同问题场景的其他实例。我们提出了三个基于目标的目标函数,并表明在现实世界的家庭医疗保健计划问题上,该方法可以在更短的计算时间内产生改进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信