Measurement prioritization for optimal Bayesian fusion

J. Aughenbaugh, Brian R. LaCour
{"title":"Measurement prioritization for optimal Bayesian fusion","authors":"J. Aughenbaugh, Brian R. LaCour","doi":"10.1109/ICIF.2007.4408158","DOIUrl":null,"url":null,"abstract":"This paper examines the ordering of measurement updates for a general Bayesian inference problem and its impact on the estimation of the posterior distribution. The approach used compares the expected improvement to the posterior from various types of potential measurements, taking into account the current estimated prior but not the actual measurements, to determine the optimal measurement to perform and/or incorporate. The expected improvement is quantified using both an entropy and a covariance-based measure, each of which is further approximated for computational expedience. Compared to a random ordering of measurements, the posterior is observed to converge more quickly, resulting in a significant improvement in performance.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper examines the ordering of measurement updates for a general Bayesian inference problem and its impact on the estimation of the posterior distribution. The approach used compares the expected improvement to the posterior from various types of potential measurements, taking into account the current estimated prior but not the actual measurements, to determine the optimal measurement to perform and/or incorporate. The expected improvement is quantified using both an entropy and a covariance-based measure, each of which is further approximated for computational expedience. Compared to a random ordering of measurements, the posterior is observed to converge more quickly, resulting in a significant improvement in performance.
最优贝叶斯融合的测量优先级
本文研究了一般贝叶斯推理问题的测量更新顺序及其对后验分布估计的影响。所使用的方法将各种潜在测量的预期改进与后验进行比较,考虑到当前估计的先验而不是实际测量,以确定要执行和/或纳入的最佳测量。预期的改进使用熵和基于协方差的度量来量化,为了计算方便,每个度量都进一步近似。与随机排序的测量值相比,观察到后验收敛得更快,从而显著提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信