Effect of Dataset Size and Hidden Layers on the Stability Classification of IEEE-14 Bus System Using Deep Neural Network

Md. Rayid Hasan Mojumder, N. K. Roy
{"title":"Effect of Dataset Size and Hidden Layers on the Stability Classification of IEEE-14 Bus System Using Deep Neural Network","authors":"Md. Rayid Hasan Mojumder, N. K. Roy","doi":"10.1109/ICEPE56629.2022.10044902","DOIUrl":null,"url":null,"abstract":"This research considers the dataset of the IEEE 14 bus system, generated from Modelica Dymola, to correctly classify the power system stability using deep neural networks and classical machine learning algorithms. The ground truth is set from the damping ratio metric of the system eigenvalues. The size of the dataset decreases the efficiency of the neural network slightly, but the efficiency of the classical machine learning algorithms drops drastically. Different architecture and activation functions are used for neural network design. Increasing the number of hidden layers increases prediction precision, however, increasing more than two hidden layers does not further improve the classification efficiency. This research will help in further research on the stability classification of power systems using damping ratio or eigenvalue as the base and using deep learning and machine learning algorithms for the prediction.","PeriodicalId":162510,"journal":{"name":"2022 International Conference on Energy and Power Engineering (ICEPE)","volume":"92 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Energy and Power Engineering (ICEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPE56629.2022.10044902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research considers the dataset of the IEEE 14 bus system, generated from Modelica Dymola, to correctly classify the power system stability using deep neural networks and classical machine learning algorithms. The ground truth is set from the damping ratio metric of the system eigenvalues. The size of the dataset decreases the efficiency of the neural network slightly, but the efficiency of the classical machine learning algorithms drops drastically. Different architecture and activation functions are used for neural network design. Increasing the number of hidden layers increases prediction precision, however, increasing more than two hidden layers does not further improve the classification efficiency. This research will help in further research on the stability classification of power systems using damping ratio or eigenvalue as the base and using deep learning and machine learning algorithms for the prediction.
数据集大小和隐层对基于深度神经网络的IEEE-14总线系统稳定性分类的影响
本研究考虑由Modelica Dymola生成的IEEE 14总线系统数据集,利用深度神经网络和经典机器学习算法对电力系统稳定性进行正确分类。根据系统特征值的阻尼比度量来确定基本真值。数据集的大小会略微降低神经网络的效率,但经典机器学习算法的效率会急剧下降。神经网络设计采用了不同的体系结构和激活函数。增加隐藏层数可以提高预测精度,但增加两个以上的隐藏层并不能进一步提高分类效率。本研究将有助于进一步研究以阻尼比或特征值为基础,利用深度学习和机器学习算法进行预测的电力系统稳定性分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信