Microcell coverage prediction using artificial neural networks

A. Neskovic, N. Neskovic, D. Paunovic
{"title":"Microcell coverage prediction using artificial neural networks","authors":"A. Neskovic, N. Neskovic, D. Paunovic","doi":"10.1109/NEUREL.2002.1057997","DOIUrl":null,"url":null,"abstract":"A new microcell prediction model for mobile phone environment is presented in this paper. The model is based on the principles of popular feedforward neural networks. Utilising a new artificial neural network model some important disadvantages of both deterministic and empirical models can be overcome. In order to build the model, extensive electric field level measurements (in 900 MHz frequency band) were carried out in the city of Belgrade, for two different test transmitter locations. The comparison between the data obtained by the proposed electric field level prediction model and the independent measurement sets, have shown that the proposed model is accurate (on the order of the local mean measurements uncertainty) and reliable. At the same time, the algorithm is suitable for computer implementation, simple and fast.","PeriodicalId":347066,"journal":{"name":"6th Seminar on Neural Network Applications in Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2002.1057997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A new microcell prediction model for mobile phone environment is presented in this paper. The model is based on the principles of popular feedforward neural networks. Utilising a new artificial neural network model some important disadvantages of both deterministic and empirical models can be overcome. In order to build the model, extensive electric field level measurements (in 900 MHz frequency band) were carried out in the city of Belgrade, for two different test transmitter locations. The comparison between the data obtained by the proposed electric field level prediction model and the independent measurement sets, have shown that the proposed model is accurate (on the order of the local mean measurements uncertainty) and reliable. At the same time, the algorithm is suitable for computer implementation, simple and fast.
基于人工神经网络的微蜂窝覆盖预测
提出了一种新的手机环境微蜂窝预测模型。该模型基于流行的前馈神经网络原理。利用新的人工神经网络模型可以克服确定性模型和经验模型的一些重要缺点。为了建立该模型,在贝尔格莱德市对两个不同的测试发射机位置进行了广泛的电场电平测量(900 MHz频段)。将所建立的电场能级预测模型与独立测量集的实测数据进行比较,结果表明所建立的模型具有较高的精度(在局部平均测量不确定度的量级上)和可靠性。同时,该算法适合在计算机上实现,简单快捷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信