Range scan-based localization methods for mobile robots in complex environments

R. Mázl, Miroslav Kulich, L. Preucil
{"title":"Range scan-based localization methods for mobile robots in complex environments","authors":"R. Mázl, Miroslav Kulich, L. Preucil","doi":"10.1109/ITSC.2001.948669","DOIUrl":null,"url":null,"abstract":"The work introduces design and comparison of different-brand methods for position localization of indoor mobile robots. Both the methods derive the robot relative position from a structure of the working environment based on measurements gathered by a TOF-based laser ranging system. The first presented method applies statistical description of the scene while the other one relies on a feature-based matching approach. Both the approaches provide method-specific behavior, which has been recognized in experiments with real data. The obtained results are compared and further improvements of the localization robustness via their combination are discussed.","PeriodicalId":173372,"journal":{"name":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2001.948669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The work introduces design and comparison of different-brand methods for position localization of indoor mobile robots. Both the methods derive the robot relative position from a structure of the working environment based on measurements gathered by a TOF-based laser ranging system. The first presented method applies statistical description of the scene while the other one relies on a feature-based matching approach. Both the approaches provide method-specific behavior, which has been recognized in experiments with real data. The obtained results are compared and further improvements of the localization robustness via their combination are discussed.
基于距离扫描的复杂环境下移动机器人定位方法
介绍了不同品牌的室内移动机器人位置定位方法的设计和比较。这两种方法都是基于基于tof的激光测距系统收集的测量数据,从工作环境的结构中得出机器人的相对位置。第一种方法使用场景的统计描述,而另一种方法依赖于基于特征的匹配方法。这两种方法都提供了方法特定的行为,这在实际数据的实验中得到了认可。对得到的结果进行了比较,并讨论了通过两者的结合进一步提高定位鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信