Context-aware intrusion alerts verification approach

Sherif Saad, I. Traoré, Marcelo Luiz Brocardo
{"title":"Context-aware intrusion alerts verification approach","authors":"Sherif Saad, I. Traoré, Marcelo Luiz Brocardo","doi":"10.1109/ISIAS.2014.7064620","DOIUrl":null,"url":null,"abstract":"Intrusion detection systems (IDSs) produce a massive number of intrusion alerts. A huge number of these alerts are false positives. Investigating false positive alerts is an expensive and time consuming process, and as such represents a significant problem for intrusion analysts. This shows the needs for automated approaches to eliminate false positive alerts. In this paper, we propose a novel alert verification and false positives reduction approach. The proposed approach uses context-aware and semantic similarity to filter IDS alerts and eliminate false positives. Evaluation of the approach with an IDS dataset that contains massive number of IDS alerts yields strong performance in detecting false positive alerts.","PeriodicalId":146781,"journal":{"name":"2014 10th International Conference on Information Assurance and Security","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Information Assurance and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIAS.2014.7064620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Intrusion detection systems (IDSs) produce a massive number of intrusion alerts. A huge number of these alerts are false positives. Investigating false positive alerts is an expensive and time consuming process, and as such represents a significant problem for intrusion analysts. This shows the needs for automated approaches to eliminate false positive alerts. In this paper, we propose a novel alert verification and false positives reduction approach. The proposed approach uses context-aware and semantic similarity to filter IDS alerts and eliminate false positives. Evaluation of the approach with an IDS dataset that contains massive number of IDS alerts yields strong performance in detecting false positive alerts.
上下文感知的入侵警报验证方法
入侵检测系统(ids)产生大量的入侵警报。这些警报中有大量是误报。调查假阳性警报是一个昂贵且耗时的过程,因此对入侵分析人员来说是一个重大问题。这表明需要自动化方法来消除误报警报。在本文中,我们提出了一种新的警报验证和误报减少方法。所建议的方法使用上下文感知和语义相似性来过滤IDS警报并消除误报。使用包含大量IDS警报的IDS数据集对该方法进行评估,在检测误报警报方面产生了很强的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信