A medical image fusion method based on convolutional neural networks

Yu Liu, Xun Chen, Juan Cheng, Hu Peng
{"title":"A medical image fusion method based on convolutional neural networks","authors":"Yu Liu, Xun Chen, Juan Cheng, Hu Peng","doi":"10.23919/ICIF.2017.8009769","DOIUrl":null,"url":null,"abstract":"Medical image fusion technique plays an an increasingly critical role in many clinical applications by deriving the complementary information from medical images with different modalities. In this paper, a medical image fusion method based on convolutional neural networks (CNNs) is proposed. In our method, a siamese convolutional network is adopted to generate a weight map which integrates the pixel activity information from two source images. The fusion process is conducted in a multi-scale manner via image pyramids to be more consistent with human visual perception. In addition, a local similarity based strategy is applied to adaptively adjust the fusion mode for the decomposed coefficients. Experimental results demonstrate that the proposed method can achieve promising results in terms of both visual quality and objective assessment.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"228","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 228

Abstract

Medical image fusion technique plays an an increasingly critical role in many clinical applications by deriving the complementary information from medical images with different modalities. In this paper, a medical image fusion method based on convolutional neural networks (CNNs) is proposed. In our method, a siamese convolutional network is adopted to generate a weight map which integrates the pixel activity information from two source images. The fusion process is conducted in a multi-scale manner via image pyramids to be more consistent with human visual perception. In addition, a local similarity based strategy is applied to adaptively adjust the fusion mode for the decomposed coefficients. Experimental results demonstrate that the proposed method can achieve promising results in terms of both visual quality and objective assessment.
基于卷积神经网络的医学图像融合方法
医学图像融合技术通过从不同形态的医学图像中提取互补信息,在许多临床应用中发挥着越来越重要的作用。提出了一种基于卷积神经网络(cnn)的医学图像融合方法。在我们的方法中,采用连体卷积网络生成一个权重图,该权重图集成了来自两个源图像的像素活动信息。融合过程通过图像金字塔进行多尺度的融合,更符合人的视觉感知。此外,采用局部相似度策略自适应调整分解系数的融合模式。实验结果表明,该方法在视觉质量和客观评价方面都取得了令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信